Papers
Topics
Authors
Recent
Search
2000 character limit reached

ECO-DKF: Event-Triggered and Certifiable Optimal Distributed Kalman Filter under Unknown Correlations

Published 4 Nov 2023 in eess.SY and cs.SY | (2311.02406v1)

Abstract: This paper presents ECO-DKF, the first Event-Triggered and Certifiable Optimal Distributed Kalman Filter. Our algorithm addresses two major issues inherent to Distributed Kalman Filters: (i) fully distributed and scalable optimal estimation and (ii) reduction of the communication bandwidth usage. The first requires to solve an NP-hard optimisation problem, forcing relaxations that lose optimality guarantees over the original problem. Using only information from one-hop neighbours, we propose a tight Semi-Definite Programming relaxation that allows to certify locally and online if the relaxed solution is the optimum of the original NP-hard problem. In that case, ECO-DKF is optimal in the square error sense under scalability and event-triggered one-hop communications restrictions. Additionally, ECO-DKF is a globally asymptotically stable estimator. To address the second issue, we propose an event-triggered scheme from the relaxed optimisation output. The consequence is a broadcasting-based algorithm that saves communication bandwidth, avoids individual communication links and multiple information exchanges within instants, and preserves the optimality and stability properties of the filter.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.