Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

The Tensor as an Informational Resource (2311.02190v2)

Published 3 Nov 2023 in quant-ph, cs.CC, math.AG, and math.CO

Abstract: A tensor is a multidimensional array of numbers that can be used to store data, encode a computational relation and represent quantum entanglement. In this sense a tensor can be viewed as valuable resource whose transformation can lead to an understanding of structure in data, computational complexity and quantum information. In order to facilitate the understanding of this resource, we propose a family of information-theoretically constructed preorders on tensors, which can be used to compare tensors with each other and to assess the existence of transformations between them. The construction places copies of a given tensor at the edges of a hypergraph and allows transformations at the vertices. A preorder is then induced by the transformations possible in a given growing sequence of hypergraphs. The new family of preorders generalises the asymptotic restriction preorder which Strassen defined in order to study the computational complexity of matrix multiplication. We derive general properties of the preorders and their associated asymptotic notions of tensor rank and view recent results on tensor rank non-additivity, tensor networks and algebraic complexity in this unifying frame. We hope that this work will provide a useful vantage point for exploring tensors in applied mathematics, physics and computer science, but also from a purely mathematical point of view.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com