A Gap in the Subrank of Tensors (2212.01668v2)
Abstract: The subrank of tensors is a measure of how much a tensor can be ''diagonalized''. This parameter was introduced by Strassen to study fast matrix multiplication algorithms in algebraic complexity theory and is closely related to many central tensor parameters (e.g. slice rank, partition rank, analytic rank, geometric rank, G-stable rank) and problems in combinatorics, computer science and quantum information theory. Strassen (J. Reine Angew. Math., 1988) proved that there is a gap in the subrank when taking large powers under the tensor product: either the subrank of all powers is at most one, or it grows as a power of a constant strictly larger than one. In this paper, we precisely determine this constant for tensors of any order. Additionally, for tensors of order three, we prove that there is a second gap in the possible rates of growth. Our results strengthen the recent work of Costa and Dalai (J. Comb. Theory, Ser. A, 2021), who proved a similar gap for the slice rank. Our theorem on the subrank has wider applications by implying such gaps not only for the slice rank, but for any ``normalized monotone''. In order to prove the main result, we characterize when a tensor has a very structured tensor (the W-tensor) in its orbit closure. Our methods include degenerations in Grassmanians, which may be of independent interest.
- On cap sets and the group-theoretic approach to matrix multiplication. Discrete Anal., pages Paper No. 3, 27, 2017. doi:10.19086/da.1245.
- Discreteness of asymptotic tensor ranks. arXiv, 2023. doi:10.48550/arXiv.2306.01718.
- Algebraic complexity theory, volume 315 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1997. doi:10.1007/978-3-662-03338-8.
- A Tensor Restriction Theorem over Finite Fields. arXiv:2211.12319, 2022. doi:10.48550/arxiv.2211.12319.
- A. Bik. Strength and Noetherianity for infinite tensors. PhD thesis, Universität Bern, 2020. URL: https://boristheses.unibe.ch/id/eprint/2031.
- J. Buczyński and J. M. Landsberg. Ranks of tensors and a generalization of secant varieties. Lin. Alg. Appl., 438(2):668–689, 2013. doi:10.1016/j.laa.2012.05.001.
- A. Cayley. On the theory of linear transformations. Cambridge Math. J., iv:193–209, 1845.
- S. Costa and M. Dalai. A gap in the slice rank of k𝑘kitalic_k-tensors. J. Comb. Theory, Ser. A, 177:105335, 2021. doi:10.1016/j.jcta.2020.105335.
- Symmetric Subrank of Tensors and Applications. arXiv, 2021. doi:10.48550/arXiv.2104.01130.
- C.-Y. Chang. Maximal Border Subrank Tensors. arXiv, 2022. doi:10.48550/arXiv.2208.04281.
- Progression-free sets in 𝐙4nsubscriptsuperscript𝐙𝑛4\mathbf{Z}^{n}_{4}bold_Z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT are exponentially small. Ann. of Math. (2), 185(1):331–337, 2017. doi:10.4007/annals.2017.185.1.7.
- Asymptotic tensor rank of graph tensors: beyond matrix multiplication. Computational Complexity, 28(1):57–111, 2019. doi:10.1007/s00037-018-0172-8.
- Universal points in the asymptotic spectrum of tensors. J. Amer. Math. Soc., 36:31–79, 2023. doi:10.1090/jams/996.
- H. Derksen. The G-stable rank for tensors and the cap set problem. Algebra Number Theory, 16(5):1071–1097, 2022. doi:10.2140/ant.2022.16.1071.
- Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors. In 37th Computational Complexity Conference (CCC 2022), page 9:1–9:23, 2022. doi:10.4230/LIPIcs.CCC.2022.9.
- J. Draisma. Topological Noetherianity of polynomial functors. J. Amer. Math. Soc., 32(3):691–707, 2019. doi:10.1090/jams/923.
- J. S. Ellenberg and D. Gijswijt. On large subsets of with no three-term arithmetic progression. Annals of Mathematics, page 339–343, 2017. doi:10.4007/annals.2017.185.1.8.
- F. R. Gantmacher. The theory of matrices. Vol. 2. Chelsea Publishing Co., New York, 1959.
- R. Geng. Geometric rank and linear determinantal varieties. European J. of Mathematics, 9(2):23, 2023. doi:10.1007/s40879-023-00615-2.
- Partially symmetric variants of Comon’s problem via simultaneous rank. SIAM J. Mat. Anal. Appl., 40(4):1453–1477, 2019. doi:10.1137/18M1225422.
- W. T. Gowers and J. Wolf. Linear forms and higher-degree uniformity for functions on 𝐅pnsubscriptsuperscript𝐅𝑛𝑝\mathbf{F}^{n}_{p}bold_F start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT. Geom. Funct. Anal., 21(1):36–69, 2011. doi:10.1007/s00039-010-0106-3.
- F. Gesmundo and J. Zuiddam. The next gap in the subrank of 3333-tensors. arXiv, 2023. doi:10.48550/arXiv.2307.06115.
- D. Hilbert. Über die vollen Invariantensysteme. Math. Ann., 42:313–373, 1893.
- A. W. Harrow and A. Montanaro. Testing product states, quantum Merlin-Arthur games and tensor optimization. Journal of the ACM, 60(1):1–43, 2013. doi:10.1145/2432622.2432625.
- P. Hell and J. Nesetril. Graphs and homomorphisms, volume 28 of Oxford Lecture Series in Mathematics and its Applications. OUP Oxford, 2004.
- O. Holtz and B. Sturmfels. Hyperdeterminantal relations among symmetric principal minors. J. Algebra, 316(2):634–648, 2007. doi:10.1016/j.jalgebra.2007.01.039.
- T. Karam. High-rank minors for high-rank tensors. arXiv, 2022. doi:10.48550/arXiv.2207.08030.
- Geometric Rank of Tensors and Subrank of Matrix Multiplication. In 35th Computational Complexity Conference (CCC 2020), 2020. doi:10.4230/LIPIcs.CCC.2020.35.
- H. Kraft. Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics, D1. Friedr. Vieweg & Sohn, Braunschweig, 1984.
- J. M. Landsberg. Tensors: Geometry and Applications, volume 128 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.
- J. M. Landsberg and L. Manivel. On the ideals of secant varieties of Segre varieties. Found. Comp. Math., 4(4):397–422, 2004. doi:10.1007/s10208-003-0115-9.
- S. Lovett. The analytic rank of tensors and its applications. Discrete Anal., pages Paper No. 7, 10, 2019. arXiv:1806.09179, doi:10.19086/da.8654.
- J. M. Landsberg and J. Weyman. On tangential varieties of rational homogeneous varieties. J. Lond. Math. Soc., 76(2):513–530, 2007. doi:10.1112/jlms/jdm075.
- E. Naslund. The partition rank of a tensor and k𝑘kitalic_k-right corners in 𝐅qnsuperscriptsubscript𝐅𝑞𝑛{\mathbf{F}}_{q}^{n}bold_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. J. Comb. Theory, Ser. A, 174:105190, 2020. doi:10.1016/j.jcta.2019.105190.
- E. Naslund and W. F. Sawin. Upper bounds for sunflower-free sets. Forum Math. Sigma, 5:Paper No. e15, 10, 2017. doi:10.1017/fms.2017.12.
- L. Oeding. Report on “Geometry and representation theory of tensors for computer science, statistics and other areas.”. arXiv, 2008. doi:10.48550/arXiv.0810.3940.
- L. Oeding. Set-theoretic defining equations of the tangential variety of the Segre variety. J. Pure and Appl. Alg., 215(6):1516–1527, 2011. doi:10.1016/j.jpaa.2010.09.009.
- L. Oeding and C. Raicu. Tangential varieties of Segre–Veronese varieties. Collect. Math., 65(3):303–330, 2014. doi:10.1007/s13348-014-0111-1.
- Y. Shitov. A counterexample to Comon’s conjecture. SIAM J. Appl. Alg. Geom., 2(3):428–443, 2018. doi:10.1137/17M1131970.
- Y. Shitov. The Subrank of a Complex Symmetric Tensor Can Exceed its Symmetric Subrank. SIAM J. Appl. Alg. Geom., 6(4):531–535, 2022. doi:10.1137/21M1465494.
- W. F. Sawin and T. Tao. Notes on the “slice rank” of tensors, 2016. URL: https://terrytao.wordpress.com/2016/08/24/.
- V. Strassen. Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math., 375/376:406–443, 1987. doi:10.1515/crll.1987.375-376.406.
- V. Strassen. The asymptotic spectrum of tensors. J. Reine Angew. Math., 384:102–152, 1988. doi:10.1515/crll.1988.384.102.
- V. Strassen. Degeneration and complexity of bilinear maps: some asymptotic spectra. J. Reine Angew. Math., 413:127–180, 1991. doi:10.1515/crll.1991.413.127.
- J. J. Sylvester. On the principles of the calculus of forms. Cambridge and Dublin Math. J., 7:52–97, 1852.
- T. Tao. A symmetric formulation of the Croot-Lev-Pach-Ellenberg-Gijswijt capset bound, 2016. URL: https://terrytao.wordpress.com/2016/05/18/.
- Entanglement polytopes: multiparticle entanglement from single-particle information. Science, 340(6137):1205–1208, 2013. doi:10.1126/science.1232957.
- Matthias Christandl (82 papers)
- Fulvio Gesmundo (38 papers)
- Jeroen Zuiddam (29 papers)