Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Notions of Tensor Rank (2210.01183v2)

Published 3 Oct 2022 in cs.CC

Abstract: Tensors, or multi-linear forms, are important objects in a variety of areas from analytics, to combinatorics, to computational complexity theory. Notions of tensor rank aim to quantify the "complexity" of these forms, and are thus also important. While there is one single definition of rank that completely captures the complexity of matrices (and thus linear transformations), there is no definitive analog for tensors. Rather, many notions of tensor rank have been defined over the years, each with their own set of uses. In this paper we survey the popular notions of tensor rank. We give a brief history of their introduction, motivating their existence, and discuss some of their applications in computer science. We also give proof sketches of recent results by Lovett, and Cohen and Moshkovitz, which prove asymptotic equivalence between three key notions of tensor rank over finite fields with at least three elements.

Citations (1)

Summary

We haven't generated a summary for this paper yet.