Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sorting with Predictions

Published 1 Nov 2023 in cs.DS and cs.LG | (2311.00749v1)

Abstract: We explore the fundamental problem of sorting through the lens of learning-augmented algorithms, where algorithms can leverage possibly erroneous predictions to improve their efficiency. We consider two different settings: In the first setting, each item is provided a prediction of its position in the sorted list. In the second setting, we assume there is a "quick-and-dirty" way of comparing items, in addition to slow-and-exact comparisons. For both settings, we design new and simple algorithms using only $O(\sum_i \log \eta_i)$ exact comparisons, where $\eta_i$ is a suitably defined prediction error for the $i$th element. In particular, as the quality of predictions deteriorates, the number of comparisons degrades smoothly from $O(n)$ to $O(n\log n)$. We prove that the comparison complexity is theoretically optimal with respect to the examined error measures. An experimental evaluation against existing adaptive and non-adaptive sorting algorithms demonstrates the potential of applying learning-augmented algorithms in sorting tasks.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.