Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Anomaly constraints for heterotic strings and supergravity in six dimensions (2310.20480v2)

Published 31 Oct 2023 in hep-th and gr-qc

Abstract: The landscape of six-dimensional supergravities is dramatically constrained by the cancellation of gauge and gravitational anomalies, but the full extent of its implications has not been uncovered. We explore the cancellation of global anomalies of the Dai-Freed type in this setting with abelian and simply laced gauge groups, finding novel constraints. In particular, we exclude arbitrarily large abelian charges in an infinite family of theories for certain types of quadratic refinements, including a specific one defined in the literature. We also show that the Gepner orientifold with no tensor multiplets is anomaly-free for a different choice, as well as a number of heterotic models with and without spacetime supersymmetry in six dimensions. The latter analysis extends previous results in ten dimensions to some lower-dimensional settings in the heterotic landscape.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (110)
  1. David J. Gross and Paul F. Mende “The High-Energy Behavior of String Scattering Amplitudes” In Phys. Lett. B 197, 1987, pp. 129–134 DOI: 10.1016/0370-2693(87)90355-8
  2. David J. Gross and Paul F. Mende “String Theory Beyond the Planck Scale” In Nucl. Phys. B 303, 1988, pp. 407–454 DOI: 10.1016/0550-3213(88)90390-2
  3. Paul F. Mende and Hirosi Ooguri “Borel Summation of String Theory for Planck Scale Scattering” In Nucl. Phys. B 339, 1990, pp. 641–662 DOI: 10.1016/0550-3213(90)90202-O
  4. Edward Witten “String theory dynamics in various dimensions” In Nucl. Phys. B 443, 1995, pp. 85–126 DOI: 10.1016/0550-3213(95)00158-O
  5. T. Daniel Brennan, Federico Carta and Cumrun Vafa “The String Landscape, the Swampland, and the Missing Corner” In Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Physics at the Fundamental Frontier (TASI 2017): Boulder, CO, USA, June 5-30, 2017 TASI2017, 2017, pp. 015 DOI: 10.22323/1.305.0015
  6. Cumrun Vafa “The String landscape and the swampland”, 2005 arXiv:hep-th/0509212
  7. Eran Palti “The Swampland: Introduction and Review” In Fortsch. Phys. 67.6, 2019, pp. 1900037 DOI: 10.1002/prop.201900037
  8. “Lectures on the Swampland Program in String Compactifications” In Phys. Rept. 989, 2022, pp. 1–50 DOI: 10.1016/j.physrep.2022.09.002
  9. “The Swampland Conjectures: A Bridge from Quantum Gravity to Particle Physics” In Universe 7.8, 2021, pp. 273 DOI: 10.3390/universe7080273
  10. “Lectures on the string landscape and the Swampland”, 2022 arXiv:2212.06187 [hep-th]
  11. Hee-Cheol Kim, Gary Shiu and Cumrun Vafa “Branes and the Swampland” In Phys. Rev. D 100.6, 2019, pp. 066006 DOI: 10.1103/PhysRevD.100.066006
  12. “Cobordism Conjecture, Anomalies, and the String Lamppost Principle” In JHEP 01, 2021, pp. 063 DOI: 10.1007/JHEP01(2021)063
  13. “8d supergravity, reconstruction of internal geometry and the Swampland” In JHEP 06, 2021, pp. 178 DOI: 10.1007/JHEP06(2021)178
  14. “Compactness of brane moduli and the String Lamppost Principle in d >>> 6” In JHEP 02, 2022, pp. 082 DOI: 10.1007/JHEP02(2022)082
  15. Vijay Kumar, David R. Morrison and Washington Taylor “Global aspects of the space of 6D N = 1 supergravities” In JHEP 11, 2010, pp. 118 DOI: 10.1007/JHEP11(2010)118
  16. Daniel S. Park and Washington Taylor “Constraints on 6D Supergravity Theories with Abelian Gauge Symmetry” In JHEP 01, 2012, pp. 141 DOI: 10.1007/JHEP01(2012)141
  17. Washington Taylor and Andrew P. Turner “An infinite swampland of U(1) charge spectra in 6D supergravity theories” In JHEP 06, 2018, pp. 010 DOI: 10.1007/JHEP06(2018)010
  18. “Swampland Bounds on the Abelian Gauge Sector” In Phys. Rev. D 100.2, 2019, pp. 026015 DOI: 10.1103/PhysRevD.100.026015
  19. Hee-Cheol Kim, Houri-Christina Tarazi and Cumrun Vafa “Four-dimensional 𝒩=𝟒𝒩4\mathbf{\mathcal{N}=4}caligraphic_N = bold_4 SYM theory and the swampland” In Phys. Rev. D 102.2, 2020, pp. 026003 DOI: 10.1103/PhysRevD.102.026003
  20. “Swampland Constraints on 5d 𝒩=1𝒩1\mathcal{N}=1caligraphic_N = 1 Supergravity” In JHEP 07, 2020, pp. 080 DOI: 10.1007/JHEP07(2020)080
  21. “String Defects, Supersymmetry and the Swampland” In JHEP 11, 2020, pp. 125 DOI: 10.1007/JHEP11(2020)125
  22. “On The Finiteness of 6d Supergravity Landscape”, 2021 arXiv:2106.10839 [hep-th]
  23. Luca Martucci, Nicolo Risso and Timo Weigand “Quantum gravity bounds on 𝒩𝒩\mathcal{N}caligraphic_N = 1 effective theories in four dimensions” In JHEP 03, 2023, pp. 197 DOI: 10.1007/JHEP03(2023)197
  24. “On the String Landscape Without Hypermultiplets”, 2023 arXiv:2309.15152 [hep-th]
  25. Hirotaka Hayashi, Hee-Cheol Kim and Minsung Kim “Spectra of BPS Strings in 6d Supergravity and the Swampland”, 2023 arXiv:2310.12219 [hep-th]
  26. “Dai-Freed anomalies in particle physics” In JHEP 08, 2019, pp. 003 DOI: 10.1007/JHEP08(2019)003
  27. Luis Alvarez-Gaume and Paul H. Ginsparg “The Topological Meaning of Nonabelian Anomalies” In Nucl. Phys. B 243, 1984, pp. 449–474 DOI: 10.1016/0550-3213(84)90487-5
  28. “Gravitational Anomalies” In Nucl. Phys. B 234, 1984, pp. 269 DOI: 10.1016/0550-3213(84)90066-X
  29. Luis Alvarez-Gaume and Paul H. Ginsparg “The Structure of Gauge and Gravitational Anomalies” [Erratum: Annals Phys. 171, 233 (1986)] In Annals Phys. 161, 1985, pp. 423 DOI: 10.1016/0003-4916(85)90087-9
  30. Luis Alvarez-Gaume, S. Della Pietra and Gregory W. Moore “Anomalies and Odd Dimensions” In Annals Phys. 163, 1985, pp. 288 DOI: 10.1016/0003-4916(85)90383-5
  31. Luis Alvarez-Gaume and Miguel A. Vazquez-Mozo “Anomalies and the Green-Schwarz Mechanism”, 2022 arXiv:2211.06467 [hep-th]
  32. Edward Witten “An SU(2) Anomaly” In Phys. Lett. B 117, 1982, pp. 324–328 DOI: 10.1016/0370-2693(82)90728-6
  33. Edward Witten “GLOBAL GRAVITATIONAL ANOMALIES” In Commun. Math. Phys. 100, 1985, pp. 197 DOI: 10.1007/BF01212448
  34. Edward Witten “GLOBAL ANOMALIES IN STRING THEORY” In Symposium on Anomalies, Geometry, Topology, 1985
  35. “Anomaly Inflow and the η𝜂\etaitalic_η-Invariant” In The Shoucheng Zhang Memorial Workshop, 2019 arXiv:1909.08775 [hep-th]
  36. Samuel Monnier and Gregory W. Moore “Remarks on the Green–Schwarz Terms of Six-Dimensional Supergravity Theories” In Commun. Math. Phys. 372.3, 2019, pp. 963–1025 DOI: 10.1007/s00220-019-03341-7
  37. “Global anomalies in 8d supergravity” In JHEP 07, 2022, pp. 125 DOI: 10.1007/JHEP07(2022)125
  38. “Global anomalies & bordism of non-supersymmetric strings”, 2023 arXiv:2310.06895 [hep-th]
  39. Yuji Tachikawa “Topological modular forms and the absence of a heterotic global anomaly” In PTEP 2022.4, 2022, pp. 04A107 DOI: 10.1093/ptep/ptab060
  40. “Topological Modular Forms and the Absence of All Heterotic Global Anomalies” [Erratum: Commun.Math.Phys. 402, 2131 (2023)] In Commun. Math. Phys. 402.2, 2023, pp. 1585–1620 DOI: 10.1007/s00220-023-04761-2
  41. Chang-Tse Hsieh, Yuji Tachikawa and Kazuya Yonekura “Anomaly Inflow and p-Form Gauge Theories” In Commun. Math. Phys. 391.2, 2022, pp. 495–608 DOI: 10.1007/s00220-022-04333-w
  42. “Supersymmetric field theories and generalized cohomology”, 2011, pp. 279–340 arXiv:1108.0189 [math.AT]
  43. Stephen L. Adler “Axial vector vertex in spinor electrodynamics” In Phys. Rev. 177, 1969, pp. 2426–2438 DOI: 10.1103/PhysRev.177.2426
  44. J. S. Bell and R. Jackiw “A PCAC puzzle: π0→γ⁢γ→superscript𝜋0𝛾𝛾\pi^{0}\to\gamma\gammaitalic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_γ italic_γ in the σ𝜎\sigmaitalic_σ model” In Nuovo Cim. A 60, 1969, pp. 47–61 DOI: 10.1007/BF02823296
  45. “Path integrals and quantum anomalies”, 2004 DOI: 10.1093/acprof:oso/9780198529132.001.0001
  46. Adel Bilal “Lectures on Anomalies”, 2008 arXiv:0802.0634 [hep-th]
  47. Jeffrey A. Harvey “TASI 2003 lectures on anomalies”, 2005 arXiv:hep-th/0509097
  48. Reinhold A. Bertlmann “177Anomalies in QFT” In Anomalies in Quantum Field Theory Oxford University Press, 2000
  49. Kazuya Yonekura “Dai-Freed theorem and topological phases of matter” In JHEP 09, 2016, pp. 022 DOI: 10.1007/JHEP09(2016)022
  50. “The Atiyah–Patodi–Singer Index and Domain-Wall Fermion Dirac Operators” In Commun. Math. Phys. 380.3, 2020, pp. 1295–1311 DOI: 10.1007/s00220-020-03806-0
  51. Edward Witten “A note on boundary conditions in Euclidean gravity” In Rev. Math. Phys. 33.10, 2021, pp. 2140004 DOI: 10.1142/S0129055X21400043
  52. Xian-zhe Dai and Daniel S. Freed “eta invariants and determinant lines” [Erratum: J.Math.Phys. 42, 2343–2344 (2001)] In J. Math. Phys. 35, 1994, pp. 5155–5194 DOI: 10.1063/1.530747
  53. D. S. Freed “ON DETERMINANT LINE BUNDLES” In Conf. Proc. C 8607214, 1986, pp. 189–238
  54. “The Chronicles of IIBordia: Dualities, Bordisms, and the Swampland”, 2023 arXiv:2302.00007 [hep-th]
  55. “The anomaly that was not meant IIB”, 2021 DOI: 10.1002/prop.202100168
  56. M. F. Atiyah, V. K. Patodi and I. M. Singer “Spectral asymmetry and Riemannian Geometry 1” In Math. Proc. Cambridge Phil. Soc. 77, 1975, pp. 43 DOI: 10.1017/S0305004100049410
  57. Tai Tsun Wu and Chen Ning Yang “Concept of nonintegrable phase factors and global formulation of gauge fields” In Phys. Rev. D 12 American Physical Society, 1975, pp. 3845–3857 DOI: 10.1103/PhysRevD.12.3845
  58. P. A. M. Dirac “The Theory of Magnetic Poles” In Phys. Rev. 74 American Physical Society, 1948, pp. 817–830 DOI: 10.1103/PhysRev.74.817
  59. Julian Schwinger “Magnetic Charge and Quantum Field Theory” In Phys. Rev. 144 American Physical Society, 1966, pp. 1087–1093 DOI: 10.1103/PhysRev.144.1087
  60. Daniel Zwanziger “Quantum Field Theory of Particles with Both Electric and Magnetic Charges” In Phys. Rev. 176 American Physical Society, 1968, pp. 1489–1495 DOI: 10.1103/PhysRev.176.1489
  61. Daniel S. Freed “Dirac charge quantization and generalized differential cohomology”, 2000 arXiv:hep-th/0011220
  62. Richard J. Szabo “Quantization of Higher Abelian Gauge Theory in Generalized Differential Cohomology” In PoS ICMP2012, 2012, pp. 009 DOI: 10.22323/1.175.0009
  63. “Differential characters and geometric invariants” In Geometry and Topology Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 50–80
  64. Pierre Deligne “Théorie de Hodge, II” In Publications Mathématiques de l’Institut des Hautes Études Scientifiques 40, 1971, pp. 5–57
  65. Daniel S. Freed, Gregory W. Moore and Graeme Segal “Heisenberg Groups and Noncommutative Fluxes” In Annals Phys. 322, 2007, pp. 236–285 DOI: 10.1016/j.aop.2006.07.014
  66. Daniel S. Freed, Gregory W. Moore and Graeme Segal “The Uncertainty of Fluxes” In Commun. Math. Phys. 271, 2007, pp. 247–274 DOI: 10.1007/s00220-006-0181-3
  67. M. J. Hopkins and I. M. Singer “Quadratic functions in geometry, topology, and M theory” In J. Diff. Geom. 70.3, 2005, pp. 329–452 arXiv:math/0211216
  68. “Generalized Global Symmetries” In JHEP 02, 2015, pp. 172 DOI: 10.1007/JHEP02(2015)172
  69. J. C. Baez and J. Dolan “Higher dimensional algebra and topological quantum field theory” In J. Math. Phys. 36, 1995, pp. 6073–6105 DOI: 10.1063/1.531236
  70. Daniel S. Freed, Michael J. Hopkins and Constantin Teleman “Consistent orientation of moduli spaces”, 2007 arXiv:0711.1909 [math.AT]
  71. Jacob Lurie “On the Classification of Topological Field Theories”, 2009 arXiv:0905.0465 [math.CT]
  72. Daniel S. Freed and Michael J. Hopkins “Reflection positivity and invertible topological phases” In Geom. Topol. 25, 2021, pp. 1165–1330 DOI: 10.2140/gt.2021.25.1165
  73. Christopher Schommer-Pries “Invertible Topological Field Theories”, 2017 arXiv:1712.08029 [math.AT]
  74. Kazuya Yonekura “On the cobordism classification of symmetry protected topological phases” In Commun. Math. Phys. 368.3, 2019, pp. 1121–1173 DOI: 10.1007/s00220-019-03439-y
  75. Markus Dierigl, Paul-Konstantin Oehlmann and Thorsten Schimannek “The discrete Green-Schwarz mechanism in 6D F-theory and elliptic genera of non-critical strings” In JHEP 03, 2023, pp. 090 DOI: 10.1007/JHEP03(2023)090
  76. Michelangelo Tartaglia “Self-dual fields in 6D Supergravity”, 2023
  77. “Quadratic functions on torsion groups” In Journal of Pure and Applied Algebra 198.1, 2005, pp. 105–121 DOI: https://doi.org/10.1016/j.jpaa.2004.10.011
  78. Laurence R. Taylor “Gauss Sums in Algebra and Topology”, 2022 URL: https://api.semanticscholar.org/CorpusID:12686252
  79. Michael B. Green and John H. Schwarz “Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory” In Phys. Lett. B 149, 1984, pp. 117–122 DOI: 10.1016/0370-2693(84)91565-X
  80. Michael B. Green, John H. Schwarz and Peter C. West “Anomaly Free Chiral Theories in Six-Dimensions” In Nucl. Phys. B 254, 1985, pp. 327–348 DOI: 10.1016/0550-3213(85)90222-6
  81. Augusto Sagnotti “A Note on the Green-Schwarz mechanism in open string theories” In Phys. Lett. B 294, 1992, pp. 196–203 DOI: 10.1016/0370-2693(92)90682-T
  82. “Global anomalies and geometric engineering of critical theories in six-dimensions”, 1997 arXiv:hep-th/9703167
  83. “Cobordism Classes and the Swampland”, 2019 arXiv:1909.10355 [hep-th]
  84. Jacob McNamara “The Kinematics of Quantum Gravity”, 2022 eprint: https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37372201
  85. Joseph Polchinski “Monopoles, duality, and string theory” In Int. J. Mod. Phys. A 19S1, 2004, pp. 145–156 DOI: 10.1142/S0217751X0401866X
  86. “Symmetries and Strings in Field Theory and Gravity” In Phys. Rev. D 83, 2011, pp. 084019 DOI: 10.1103/PhysRevD.83.084019
  87. “Chern-Weil global symmetries and how quantum gravity avoids them” In JHEP 11, 2021, pp. 053 DOI: 10.1007/JHEP11(2021)053
  88. “Non-invertible global symmetries and completeness of the spectrum” In JHEP 09, 2021, pp. 203 DOI: 10.1007/JHEP09(2021)203
  89. Jacob McNamara “Gravitational Solitons and Completeness”, 2021 arXiv:2108.02228 [hep-th]
  90. Nathan Seiberg and Washington “Charge Lattices and Consistency of 6D Supergravity” In JHEP 06, 2011, pp. 001 DOI: 10.1007/JHEP06(2011)001
  91. Mark A. Walton “Heterotic string on the simplest Calabi-Yau manifold and its orbifold limits” In Phys. Rev. D 37 American Physical Society, 1988, pp. 377–390 DOI: 10.1103/PhysRevD.37.377
  92. “Merging Heterotic Orbifolds and K3 Compactifications with Line Bundles” In JHEP 01, 2007, pp. 051 DOI: 10.1088/1126-6708/2007/01/051
  93. “Quasi-Jacobi forms, elliptic genera and strings in four dimensions” In JHEP 01, 2021, pp. 162 DOI: 10.1007/JHEP01(2021)162
  94. “The String landscape, black holes and gravity as the weakest force” In JHEP 06, 2007, pp. 060 DOI: 10.1088/1126-6708/2007/06/060
  95. “Weak gravity conjecture” In Rev. Mod. Phys. 95.3, 2023, pp. 035003 DOI: 10.1103/RevModPhys.95.035003
  96. “Strings on Orbifolds” In Nucl. Phys. B 261, 1985, pp. 678–686 DOI: 10.1016/0550-3213(85)90593-0
  97. “Strings on Orbifolds. 2.” In Nucl. Phys. B 274, 1986, pp. 285–314 DOI: 10.1016/0550-3213(86)90287-7
  98. Lance J. Dixon and Jeffrey A. Harvey “String Theories in Ten-Dimensions Without Space-Time Supersymmetry” In Nucl. Phys. B 274, 1986, pp. 93–105 DOI: 10.1016/0550-3213(86)90619-X
  99. “An O(16) x O(16) Heterotic String” In Phys. Lett. B 171, 1986, pp. 155–162 DOI: 10.1016/0370-2693(86)91524-8
  100. Doron Gepner “Space-Time Supersymmetry in Compactified String Theory and Superconformal Models” In Nucl. Phys. B 296, 1988, pp. 757 DOI: 10.1016/0550-3213(88)90397-5
  101. “Comments on Gepner models and type I vacua in string theory” In Phys. Lett. B 387, 1996, pp. 743–749 DOI: 10.1016/0370-2693(96)01124-0
  102. “Symmetries in quantum field theory and quantum gravity” In Commun. Math. Phys. 383.3, 2021, pp. 1669–1804 DOI: 10.1007/s00220-021-04040-y
  103. Andrea Guerrieri, Joao Penedones and Pedro Vieira “Where Is String Theory in the Space of Scattering Amplitudes?” In Phys. Rev. Lett. 127.8, 2021, pp. 081601 DOI: 10.1103/PhysRevLett.127.081601
  104. “Where is M-theory in the space of scattering amplitudes?” In JHEP 06, 2023, pp. 064 DOI: 10.1007/JHEP06(2023)064
  105. “Topological Modular Forms”, Mathematical Surveys and Monographs American Mathematical Society, 2014 URL: https://books.google.de/books?id=n0W9BQAAQBAJ
  106. Michael J. Hopkins “Topological Modular Forms, the Witten Genus, and the Theorem of the Cube” In Proceedings of the International Congress of Mathematicians Basel: Birkhäuser Basel, 1995, pp. 554–565
  107. “4-manifolds and topological modular forms” In JHEP 05, 2021, pp. 084 DOI: 10.1007/JHEP05(2021)084
  108. Davide Gaiotto, Theo Johnson-Freyd and Edward Witten “A Note On Some Minimally Supersymmetric Models In Two Dimensions”, 2019 arXiv:1902.10249 [hep-th]
  109. Dexter Chua “C2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-equivariant topological modular forms” In Journal of Homotopy and Related Structures 17.1 Springer ScienceBusiness Media LLC, 2022, pp. 23–75 DOI: 10.1007/s40062-021-00297-1
  110. “On equivariant topological modular forms”, 2023 arXiv:2004.10254 [math.AT]
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.