Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Fully Relativistic Entanglement Harvesting (2310.18432v2)

Published 27 Oct 2023 in quant-ph, gr-qc, and hep-th

Abstract: We study the protocol of entanglement harvesting when the particle detectors that harvest entanglement from the field are replaced by fully relativistic quantum field theories. We show that two localized modes of the quantum field theories are able to harvest the same amount of leading order entanglement as two non-relativistic particle detectors, thus implying that QFT probes can generally harvest more entanglement than particle detectors. These results legitimize the use of particle detectors to study entanglement harvesting regardless of their internally non-relativistic nature.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
  2. J. Eisert, C. Simon, and M. B. Plenio, On the quantification of entanglement in infinite-dimensional quantum systems, J. Phys. A Math. Theor. 35, 3911 (2002).
  3. E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90, 045003 (2018).
  4. J. Sorce, Notes on the type classification of von Neumann algebras (2023), arXiv:2302.01958 [hep-th] .
  5. A. Valentini, Non-local correlations in quantum electrodynamics, Phys. Lett. A 153, 321 (1991).
  6. B. Reznik, Entanglement from the vacuum, Found. Phys. 33, 167 (2003).
  7. A. Pozas-Kerstjens and E. Martín-Martínez, Harvesting correlations from the quantum vacuum, Phys. Rev. D 92, 064042 (2015).
  8. E. Tjoa and E. Martín-Martínez, When entanglement harvesting is not really harvesting, Phys. Rev. D 104, 125005 (2021).
  9. B. Reznik, A. Retzker, and J. Silman, Violating Bell’s inequalities in vacuum, Phys. Rev. A 71, 042104 (2005).
  10. J. Silman and B. Reznik, Long-range entanglement in the Dirac vacuum, Phys. Rev. A 75, 052307 (2007).
  11. G. Salton, R. B. Mann, and N. C. Menicucci, Acceleration-assisted entanglement harvesting and rangefinding, New J. Phys. 17, 035001 (2015).
  12. A. Pozas-Kerstjens and E. Martín-Martínez, Entanglement harvesting from the electromagnetic vacuum with hydrogenlike atoms, Phys. Rev. D 94, 064074 (2016).
  13. J. Foo, R. B. Mann, and M. Zych, Entanglement amplification between superposed detectors in flat and curved spacetimes, Phys. Rev. D 103, 065013 (2021).
  14. L. J. Henderson and N. C. Menicucci, Bandlimited entanglement harvesting, Phys. Rev. D 102, 125026 (2020).
  15. M. P. G. Robbins, L. J. Henderson, and R. B. Mann, Entanglement amplification from rotating black holes, Class. Quantum Gravity 39, 02LT01 (2021).
  16. T. R. Perche, C. Lima, and E. Martín-Martínez, Harvesting entanglement from complex scalar and fermionic fields with linearly coupled particle detectors, Phys. Rev. D 105, 065016 (2022).
  17. T. R. Perche, B. Ragula, and E. Martín-Martínez, Harvesting entanglement from the gravitational vacuum, Phys. Rev. D 108, 085025 (2023a).
  18. L. J. Henderson, S. Y. Ding, and R. B. Mann, Entanglement harvesting with a twist, AVS Quantum Sci. 4, 014402 (2022).
  19. K. Gallock-Yoshimura, E. Tjoa, and R. B. Mann, Harvesting entanglement with detectors freely falling into a black hole, Phys. Rev. D 104, 025001 (2021).
  20. J. Polo-Gómez, L. J. Garay, and E. Martín-Martínez, A detector-based measurement theory for quantum field theory, Phys. Rev. D 105, 065003 (2022).
  21. W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14, 870 (1976).
  22. B. DeWitt, General Relativity; an Einstein Centenary Survey (Cambridge University Press, Cambridge, UK, 1980).
  23. S. Schlicht, Considerations on the Unruh effect: causality and regularization, Class. Quantum Gravity 21, 4647 (2004).
  24. J. Louko and A. Satz, How often does the Unruh-DeWitt detector click? Regularization by a spatial profile, Class. Quantum Gravity 23, 6321 (2006).
  25. E. Martín-Martínez, M. Montero, and M. del Rey, Wavepacket detection with the Unruh-DeWitt model, Phys. Rev. D 87, 064038 (2013).
  26. E. Martín-Martínez, T. R. Perche, and B. d. S. L. Torres, Broken covariance of particle detector models in relativistic quantum information, Phys. Rev. D 103, 025007 (2021).
  27. J. de Ramón, M. Papageorgiou, and E. Martín-Martínez, Relativistic causality in particle detector models: Faster-than-light signaling and impossible measurements, Phys. Rev. D 103, 085002 (2021).
  28. J. de Ramón, M. Papageorgiou, and E. Martín-Martínez, Causality and signalling in noncompact detector-field interactions, Phys. Rev. D 108, 045015 (2023).
  29. M. H. Ruep, Weakly coupled local particle detectors cannot harvest entanglement, Class. Quantum Gravity 38, 195029 (2021).
  30. H. Reeh and S. Schlieder, Bemerkungen zur unitäräquivalenz von lorentzinvarianten feldern, Nuovo Cimento 22, 1051 (1961).
  31. S. Schlieder, Einige Bemerkungen zur Zustandsänderung von relativistischen quantenmechanischen Systemen durch Messungen und zur Lokalitätsforderung, Commun. Math. Phys. 7, 305 (1968).
  32. S. J. Summers and R. Werner, The vacuum violates Bell’s inequalities, Phys. Lett. A 110, 257 (1985).
  33. S. J. Summers and R. Werner, Bell’s inequalities and quantum field theory. I. General setting, J. Math. Phys. 28, 2440 (1987).
  34. R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (The University of Chicago Press, 1994).
  35. T. R. Perche and E. Martín-Martínez, Role of quantum degrees of freedom of relativistic fields in quantum information protocols, Phys. Rev. A 107, 042612 (2023).
  36. E. Tjoa and E. Martín-Martínez, Vacuum entanglement harvesting with a zero mode, Phys. Rev. D 101, 125020 (2020a).
  37. B. de S. L. Torres, Particle detector models from path integrals of localized quantum fields (2023), arXiv:2310.16083 [quant-ph] .
  38. D. Grimmer, B. d. S. L. Torres, and E. Martín-Martínez, Measurements in QFT: Weakly coupled local particle detectors and entanglement harvesting, Phys. Rev. D 104, 085014 (2021).
  39. H. Maeso-García, T. R. Perche, and E. Martín-Martínez, Entanglement harvesting: Detector gap and field mass optimization, Phys. Rev. D 106, 045014 (2022).
  40. E. Tjoa and E. Martín-Martínez, Vacuum entanglement harvesting with a zero mode, Phys. Rev. D 101, 125020 (2020b).
Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.