Papers
Topics
Authors
Recent
Search
2000 character limit reached

Astrophysical and Cosmological Relevance of the High-Frequency Features in the Stochastic Gravitational-Wave Background

Published 27 Oct 2023 in gr-qc and astro-ph.CO | (2310.18394v2)

Abstract: The stochastic gravitational-wave background (SGWB) produced by merging neutron stars exhibits a peak in the kHz band. In this paper, we develop a theoretical framework to exploit this distinctive feature through a Markov Chain Monte Carlo analysis using a simulated dataset of SGWB measurements within this frequency range. The aim is to use the SGWB peak as an observable to constrain a set of astrophysical and cosmological parameters that accurately describe the sources of the SGWB. We examine how variations in these parameters impact the morphology of the SGWB and investigate the necessary sensitivity to effectively constrain them. Given our priors on astrophysical and cosmological parameters, and assuming a power-law integrated sensitivity curve of the order of $10{-11}$ between 1 kHz and 5 kHz, we show that the values of the chirp mass and common envelope efficiency of the binary systems are retrieved with percent accuracy. Furthermore, the method allows for the reconstruction of the cosmological expansion history populated by these binaries, encompassing the Hubble constant, matter abundance, and the effective equation of state of dark energy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. C. Contaldi, Phys. Lett. B 771, 9 (2017), arXiv:1609.08168 [astro-ph.CO] .
  2. A. Jenkins and M. Sakellariadou, Phys. Rev. D 98, 063509 (2018), arXiv:1802.06046 [astro-ph.CO] .
  3. J. Romano and N. Cornish, Living Rev. Rel. 20, 2 (2017), arXiv:1608.06889 [gr-qc] .
  4. N. Christensen, Rept. Prog. Phys. 82, 016903 (2019), arXiv:1811.08797 [gr-qc] .
  5. E. Thrane and J. D. Romano, Phys. Rev. D 88, 124032 (2013), arXiv:1310.5300 [astro-ph.IM] .
  6. B. Allen and J. D. Romano, Phys. Rev. D 59, 102001 (1999), arXiv:gr-qc/9710117 .
  7. M. Maggiore, Phys. Rept. 331, 283 (2000), arXiv:gr-qc/9909001 .
  8. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L8 (2023), arXiv:2306.16213 [astro-ph.HE] .
  9. J. Antoniadis et al. (EPTA), Astron. Astrophys. 678, A50 (2023), arXiv:2306.16214 [astro-ph.HE] .
  10. D. J. Reardon et al., Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
  11. N. Bartolo et al., JCAP 12, 026 (2016), arXiv:1610.06481 [astro-ph.CO] .
  12. C. Caprini and D. G. Figueroa, Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO] .
  13. S. J. Huber and T. Konstandin, JCAP 09, 022 (2008), arXiv:0806.1828 [hep-ph] .
  14. T. Damour and A. Vilenkin, Phys. Rev. D 71, 063510 (2005), arXiv:hep-th/0410222 .
  15. P. Auclair et al., JCAP 04, 034 (2020), arXiv:1909.00819 [astro-ph.CO] .
  16. T. Regimbau, Research in Astronomy and Astrophysics 11, 369 (2011), arXiv:1101.2762 [astro-ph.CO] .
  17. P. A. Rosado, Phys. Rev. D 84, 084004 (2011), arXiv:1106.5795 [gr-qc] .
  18. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett.  116, 131102 (2016), arXiv:1602.03847 [gr-qc] .
  19. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett.  120, 091101 (2018), arXiv:1710.05837 [gr-qc] .
  20. E. S. Phinney,   (2001), arXiv:astro-ph/0108028 .
  21. T. Regimbau and V. Mandic, Class. Quant. Grav. 25, 184018 (2008), arXiv:0806.2794 [astro-ph] .
  22. M. Maggiore et al., JCAP 03, 050 (2020), arXiv:1912.02622 [astro-ph.CO] .
  23. M. Branchesi et al., JCAP 07, 068 (2023), arXiv:2303.15923 [gr-qc] .
  24. P. Landry and J. S. Read, Astrophys. J. Lett. 921, L25 (2021), arXiv:2107.04559 [astro-ph.HE] .
  25. B. P. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 892, L3 (2020), arXiv:2001.01761 [astro-ph.HE] .
  26. N. Giacobbo and M. Mapelli, Mon. Not. Roy. Astron. Soc. 480, 2011 (2018), arXiv:1806.00001 [astro-ph.HE] .
  27. LIGO Scientific Collaboration, Classical and Quantum Gravity 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
  28. F. Arcenese et al., Classical and Quantum Gravity 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
  29. K. Somiya, Classical and Quantum Gravity 29 (2012), 10.1088/0264-9381/29/12/124007, arXiv:1111.7185 [gr-qc] .
  30. D. Reitze et al., Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833 [astro-ph.IM] .
  31. M. Evans et al.,   (2021), arXiv:2109.09882 [astro-ph.IM] .
  32. N. Giacobbo and M. Mapelli, Mon. Not. Roy. Astron. Soc. 482, 2234 (2019), arXiv:1805.11100 [astro-ph.SR] .
  33. P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A16 (2014), arXiv:1303.5076 [astro-ph.CO] .
  34. P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO] .
  35. Planck Collaboration, A&\&&A 641, A6 (2020), arXiv:1807.06209 [astro-ph.CO] .
  36. A. G. Riess et al., Astrophys. J. Lett. 934, L7 (2022), arXiv:2112.04510 [astro-ph.CO] .

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 4 likes about this paper.