Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human-in-the-Loop Task and Motion Planning for Imitation Learning (2310.16014v1)

Published 24 Oct 2023 in cs.RO, cs.AI, cs.CV, and cs.LG

Abstract: Imitation learning from human demonstrations can teach robots complex manipulation skills, but is time-consuming and labor intensive. In contrast, Task and Motion Planning (TAMP) systems are automated and excel at solving long-horizon tasks, but they are difficult to apply to contact-rich tasks. In this paper, we present Human-in-the-Loop Task and Motion Planning (HITL-TAMP), a novel system that leverages the benefits of both approaches. The system employs a TAMP-gated control mechanism, which selectively gives and takes control to and from a human teleoperator. This enables the human teleoperator to manage a fleet of robots, maximizing data collection efficiency. The collected human data is then combined with an imitation learning framework to train a TAMP-gated policy, leading to superior performance compared to training on full task demonstrations. We compared HITL-TAMP to a conventional teleoperation system -- users gathered more than 3x the number of demos given the same time budget. Furthermore, proficient agents (75\%+ success) could be trained from just 10 minutes of non-expert teleoperation data. Finally, we collected 2.1K demos with HITL-TAMP across 12 contact-rich, long-horizon tasks and show that the system often produces near-perfect agents. Videos and additional results at https://hitltamp.github.io .

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub