Gravitationally induced matter creation in scalar-tensor $f(R,T_{μν}T^{μν})$ gravity (2310.15018v3)
Abstract: In this work, we analyze the possibility of gravitationally induced matter creation in the so-called Energy-Momentum-Squared gravity (EMSG), i.e. $f(R,T_{\mu\nu}T{\mu\nu})$ gravity, in its dynamically equivalent scalar-tensor representation. Given the explicit nonminimal coupling between matter and geometry in this theory, the energy-momentum tensor is not generally covariantly conserved, which motivates the study of cosmological scenarios by resorting to the formalism of irreversible thermodynamics of open systems. We start by deriving the universe matter creation rates and subsequent thermodynamical properties, such as, the creation pressure, temperature evolution, and entropy evolution, in the framework of $f(R,T_{\mu\nu}T{\mu\nu})$ gravity. These quantities are then analyzed for a Friedmann-Lema^itre-Robertson-Walker (FLRW) background with a scale factor described by the de Sitter solution, under different assumptions for the mater distribution, namely a vacuum universe, a constant density universe, and a time-varying density universe. Finally, we explore cosmological solutions with varying Hubble parameters and provide a comparison with the standard cosmological model. Our results indicate that the cosmological evolution in the framework of EMSG are in close agreement with the observational cosmological data for low redshift.
- S. Capozziello and M. De Laurentis, “Extended Theories of Gravity,” Phys. Rept. 509 (2011), 167-321 [arXiv:1108.6266 [gr-qc]].
- A. Einstein, “Cosmological Considerations in the General Theory of Relativity,” Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1917 (1917), 142-152.
- S. Weinberg, “The Cosmological Constant Problem,” Rev. Mod. Phys. 61 (1989), 1-23.
- S. M. Carroll, “The Cosmological constant,” Living Rev. Rel. 4 (2001), 1 [arXiv:astro-ph/0004075 [astro-ph]].
- S. Nojiri and S. D. Odintsov, “Modified f(R) gravity consistent with realistic cosmology: From matter dominated epoch to dark energy universe,” Phys. Rev. D 74 (2006), 086005 [arXiv:hep-th/0608008 [hep-th]].
- S. Nojiri and S. D. Odintsov, “Unifying inflation with LambdaCDM epoch in modified f(R) gravity consistent with Solar System tests,” Phys. Lett. B 657 (2007), 238-245 [arXiv:0707.1941 [hep-th]].
- H. Weyl, “The theory of gravitation,” Annalen Phys. 54 (1917), 117-145.
- H. Weyl, “A New Extension of Relativity Theory,” Annalen Phys. 59 (1919), 101-133.
- H. A. Buchdahl, “Non-linear Lagrangians and cosmological theory,” Mon. Not. Roy. Astron. Soc. 150 (1970), 1.
- S. Capozziello and M. Francaviglia, “Extended Theories of Gravity and their Cosmological and Astrophysical Applications,” Gen. Rel. Grav. 40 (2008), 357-420 [arXiv:0706.1146 [astro-ph]].
- T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis, “Modified Gravity and Cosmology,” Phys. Rept. 513 (2012), 1-189 [arXiv:1106.2476 [astro-ph.CO]].
- N. Katırcı and M. Kavuk, “f(R,TμνTμν)𝑓𝑅subscript𝑇𝜇𝜈superscript𝑇𝜇𝜈f(R,T_{\mu\nu}T^{\mu\nu})italic_f ( italic_R , italic_T start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ) gravity and Cardassian-like expansion as one of its consequences,” Eur. Phys. J. Plus 129 (2014), 163 [arXiv:1302.4300 [gr-qc]].
- M. Roshan and F. Shojai, “Energy-Momentum Squared Gravity,” Phys. Rev. D 94 (2016) no.4, 044002 [arXiv:1607.06049 [gr-qc]].
- C. V. R. Board and J. D. Barrow, “Cosmological Models in Energy-Momentum-Squared Gravity,” Phys. Rev. D 96 (2017) no.12, 123517 [erratum: Phys. Rev. D 98 (2018) no.12, 129902] [arXiv:1709.09501 [gr-qc]].
- A. H. Barbar, A. M. Awad and M. T. AlFiky, “Viability of bouncing cosmology in energy-momentum-squared gravity,” Phys. Rev. D 101 (2020) no.4, 044058 [arXiv:1911.00556 [gr-qc]].
- E. Nazari, F. Sarvi and M. Roshan, “Generalized Energy-Momentum-Squared Gravity in the Palatini Formalism,” Phys. Rev. D 102 (2020) no.6, 064016 [arXiv:2008.06681 [gr-qc]].
- N. Nari and M. Roshan, “Compact stars in Energy-Momentum Squared Gravity,” Phys. Rev. D 98 (2018) no.2, 024031 [arXiv:1802.02399 [gr-qc]].
- Ö. Akarsu, J. D. Barrow, S. Çıkıntoğlu, K. Y. Ekşi and N. Katırcı, “Constraint on energy-momentum squared gravity from neutron stars and its cosmological implications,” Phys. Rev. D 97 (2018) no.12, 124017 [arXiv:1802.02093 [gr-qc]].
- C. Y. Chen and P. Chen, “Eikonal black hole ringings in generalized energy-momentum squared gravity,” Phys. Rev. D 101 (2020) no.6, 064021 [arXiv:1910.12262 [gr-qc]].
- T. Tangphati, I. Karar, A. Banerjee and A. Pradhan, “The mass–radius relation for quark stars in energy–momentum squared gravity,” Annals Phys. 447 (2022), 169149 [arXiv:2206.10371 [gr-qc]].
- T. Tangphati, A. Pradhan, A. Banerjee and G. Panotopoulos, “Anisotropic stars in 4D Einstein–Gauss–Bonnet gravity,” Phys. Dark Univ. 33 (2021), 100877 [arXiv:2109.00195 [gr-qc]].
- K. N. Singh, A. Banerjee, S. K. Maurya, F. Rahaman and A. Pradhan, “Color-flavor locked quark stars in energy–momentum squared gravity,” Phys. Dark Univ. 31 (2021), 100774 [arXiv:2007.00455 [gr-qc]].
- P. H. R. S. Moraes and P. K. Sahoo, “Nonexotic matter wormholes in a trace of the energy-momentum tensor squared gravity,” Phys. Rev. D 97 (2018) no.2, 024007 [arXiv:1709.00027 [gr-qc]].
- J. L. Rosa, N. Ganiyeva and F. S. N. Lobo, “Non-exotic traversable wormholes in f(R,TabTab)𝑓𝑅subscript𝑇𝑎𝑏superscript𝑇𝑎𝑏f\left(R,T_{ab}T^{ab}\right)italic_f ( italic_R , italic_T start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT italic_a italic_b end_POSTSUPERSCRIPT ) gravity,” [arXiv:2309.08768 [gr-qc]].
- Ö. Akarsu, N. Katırcı and S. Kumar, “Cosmic acceleration in a dust only universe via energy-momentum powered gravity,” Phys. Rev. D 97 (2018) no.2, 024011 [arXiv:1709.02367 [gr-qc]].
- Ö. Akarsu, J. D. Barrow and N. M. Uzun, “Screening anisotropy via energy-momentum squared gravity: ΛΛ\Lambdaroman_ΛCDM model with hidden anisotropy,” Phys. Rev. D 102 (2020) no.12, 124059 [arXiv:2009.06517 [astro-ph.CO]].
- S. Bahamonde, M. Marciu and P. Rudra, “Dynamical system analysis of generalized energy-momentum-squared gravity,” Phys. Rev. D 100 (2019) no.8, 083511 [arXiv:1906.00027 [gr-qc]].
- O. Bertolami, C. G. Boehmer, T. Harko and F. S. N. Lobo, “Extra force in f(R) modified theories of gravity,” Phys. Rev. D 75 (2007), 104016 [arXiv:0704.1733 [gr-qc]].
- T. Harko and F. S. N. Lobo, “f(R,Lmsubscript𝐿𝑚L_{m}italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT) gravity,” Eur. Phys. J. C 70 (2010), 373-379 [arXiv:1008.4193 [gr-qc]].
- Z. Haghani, T. Harko, F. S. N. Lobo, H. R. Sepangi and S. Shahidi, “Further matters in space-time geometry: f(R,T,RμνTμν)𝑓𝑅𝑇subscript𝑅𝜇𝜈superscript𝑇𝜇𝜈f(R,T,R_{\mu\nu}T^{\mu\nu})italic_f ( italic_R , italic_T , italic_R start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ) gravity,” Phys. Rev. D 88 (2013) no.4, 044023 [arXiv:1304.5957 [gr-qc]].
- T. Harko and F. S. N. Lobo, “Generalized curvature-matter couplings in modified gravity,” Galaxies 2 (2014) no.3, 410-465 [arXiv:1407.2013 [gr-qc]].
- T. Harko, F. S. N. Lobo, G. Otalora and E. N. Saridakis, “f(T,𝒯)𝑓𝑇𝒯f(T,\mathcal{T})italic_f ( italic_T , caligraphic_T ) gravity and cosmology,” JCAP 12 (2014), 021 [arXiv:1405.0519 [gr-qc]].
- T. Harko, F. S. N. Lobo, G. Otalora and E. N. Saridakis, “Nonminimal torsion-matter coupling extension of f(T) gravity,” Phys. Rev. D 89 (2014), 124036 [arXiv:1404.6212 [gr-qc]].
- T. Harko, T. S. Koivisto and F. S. N. Lobo, “Palatini formulation of modified gravity with a nonminimal curvature-matter coupling,” Mod. Phys. Lett. A 26 (2011), 1467-1480 [arXiv:1007.4415 [gr-qc]].
- T. Harko, F. S. N. Lobo and O. Minazzoli, “Extended f(R,Lm)𝑓𝑅subscript𝐿𝑚f(R,L_{m})italic_f ( italic_R , italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) gravity with generalized scalar field and kinetic term dependences,” Phys. Rev. D 87 (2013) no.4, 047501 [arXiv:1210.4218 [gr-qc]].
- O. Bertolami, J. Paramos, T. Harko and F. S. N. Lobo, “Non-minimal curvature-matter couplings in modified gravity,” [arXiv:0811.2876 [gr-qc]].
- T. Harko and F. S. N. Lobo, “Beyond Einstein’s General Relativity: Hybrid metric-Palatini gravity and curvature-matter couplings,” Int. J. Mod. Phys. D 29 (2020) no.13, 2030008 [arXiv:2007.15345 [gr-qc]].
- T. Harko and F. S. N. Lobo, “Geodesic deviation, Raychaudhuri equation, and tidal forces in modified gravity with an arbitrary curvature-matter coupling,” Phys. Rev. D 86 (2012), 124034 [arXiv:1210.8044 [gr-qc]].
- A. Ashtekar and P. Singh, “Loop Quantum Cosmology: A Status Report,” Class. Quant. Grav. 28 (2011), 213001 [arXiv:1108.0893 [gr-qc]].
- P. Brax and C. van de Bruck, “Cosmology and brane worlds: A Review,” Class. Quant. Grav. 20 (2003), R201-R232 [arXiv:hep-th/0303095 [hep-th]].
- T. Harko, F. S. N. Lobo, S. Nojiri and S. D. Odintsov, “f(R,T)𝑓𝑅𝑇f(R,T)italic_f ( italic_R , italic_T ) gravity,” Phys. Rev. D 84 (2011), 024020 [arXiv:1104.2669 [gr-qc]].
- I. Prigogine, and J. Géhéniau, “Entropy, matter, and cosmology,” PNAS 83,17 (1986) 6245-9.
- I. Prigogine, J. Geheniau, E. Gunzig and P. Nardone “Thermodynamics of cosmological matter creation”, PNAS 85, 7428 (1988).
- I. Prigogine, J. Geheniau, E. Gunzig and P. Nardone, “Thermodynamics and cosmology,” Gen. Rel. Grav. 21 (1989), 767-776.
- J. A. S. Lima and A. S. M. Germano, “On the Equivalence of matter creation in cosmology,” Phys. Lett. A 170 (1992), 373-378.
- M. O. Calvao, J. A. S. Lima and I. Waga, “On the thermodynamics of matter creation in cosmology,” Phys. Lett. A 162 (1992), 223-226.
- L. L. Graef, F. E. M. Costa and J. A. S. Lima, “On the equivalence of Λ(t)Λ𝑡\Lambda(t)roman_Λ ( italic_t ) and gravitationally induced particle production cosmologies,” Phys. Lett. B 728 (2014), 400-406 [arXiv:1303.2075 [astro-ph.CO]].
- J. A. S. Lima, L. L. Graef, D. Pavon and S. Basilakos, “Cosmic acceleration without dark energy: Background tests and thermodynamic analysis,” JCAP 10 (2014), 042 [arXiv:1406.5538 [gr-qc]].
- T. Harko, “Thermodynamic interpretation of the generalized gravity models with geometry - matter coupling,” Phys. Rev. D 90 (2014) no.4, 044067 [arXiv:1408.3465 [gr-qc]].
- J. A. S. Lima and I. Baranov, “Gravitationally Induced Particle Production: Thermodynamics and Kinetic Theory,” Phys. Rev. D 90 (2014) no.4, 043515 [arXiv:1411.6589 [gr-qc]].
- T. Harko, F. S. N. Lobo, J. P. Mimoso and D. Pavón, “Gravitational induced particle production through a nonminimal curvature–matter coupling,” Eur. Phys. J. C 75 (2015), 386 [arXiv:1508.02511 [gr-qc]].
- T. Harko, F. S. N. Lobo and E. N. Saridakis, “Gravitationally Induced Particle Production through a Nonminimal Torsion–Matter Coupling,” Universe 7 (2021) no.7, 227 [arXiv:2107.01937 [gr-qc]].
- M. A. S. Pinto, T. Harko and F. S. N. Lobo, “Gravitationally induced particle production in scalar-tensor f(R,T) gravity,” Phys. Rev. D 106 (2022) no.4, 044043 [arXiv:2205.12545 [gr-qc]].
- M. A. S. Pinto, T. Harko and F. S. N. Lobo, “Challenging ΛΛ\Lambdaroman_ΛCDM with Scalar-tensor f(R,T)𝑓𝑅𝑇f(R,T)italic_f ( italic_R , italic_T ) Gravity and Thermodynamics of Irreversible Matter Creation,” Acta Phys. Polon. Supp. 16 (2023) no.6, 28.
- M. A. S. Pinto, T. Harko and F. S. N. Lobo, “Irreversible Geometrothermodynamics of Open Systems in Modified Gravity,” Entropy 25 (2023) no.6, 944 [arXiv:2306.13912 [gr-qc]].
- T. B. Gonçalves, J. L. Rosa and F. S. N. Lobo, “Cosmology in the novel scalar-tensor representation of f(R, T) gravity,” Contribution to the Sixteenth Marcel Grossman Conference (MG16, Rome, July, 2021), to be published by World Scientifi, [arXiv:2112.03652 [gr-qc]], (2021).
- T. B. Gonçalves, J. L. Rosa and F. S. N. Lobo, “Cosmological sudden singularities in f(R, T) gravity,” Eur. Phys. J. C 82 (2022), no.5, 418
- L. Parker, “Particle creation in expanding universes,” Phys. Rev. Lett. 21 (1968), 562-564.
- L. Parker, “Quantized fields and particle creation in expanding universes. 1.,” Phys. Rev. 183 (1969), 1057-1068.
- L. Parker, “Quantized fields and particle creation in expanding universes. 2.,” Phys. Rev. D 3 (1971), 346-356 [erratum: Phys. Rev. D 3 (1971), 2546-2546].
- L. Parker, “Particle creation in isotropic cosmologies,” Phys. Rev. Lett. 28 (1972), 705-708 [erratum: Phys. Rev. Lett. 28 (1972), 1497].
- J. Haro, “Topics in Quantum Field Theory in Curved Space,” [arXiv:1011.4772 [gr-qc]].
- J. Haro, W. Yang and S. Pan, “Reheating in quintessential inflation via gravitational production of heavy massive particles: A detailed analysis,” JCAP 01 (2019), 023 [arXiv:1811.07371 [gr-qc]].
- M. N. Chernodub, “Conformal anomaly and gravitational pair production,” [arXiv:2306.03892 [hep-th]].
- O. Bertolami, F. S. N. Lobo and J. Paramos, “Non-minimum coupling of perfect fluids to curvature,” Phys. Rev. D 78 (2008), 064036 [arXiv:0806.4434 [gr-qc]].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.