Papers
Topics
Authors
Recent
2000 character limit reached

Privately Answering Queries on Skewed Data via Per Record Differential Privacy (2310.12827v2)

Published 19 Oct 2023 in cs.DB and cs.CR

Abstract: We consider the problem of the private release of statistics (like aggregate payrolls) where it is critical to preserve the contribution made by a small number of outlying large entities. We propose a privacy formalism, per-record zero concentrated differential privacy (PzCDP), where the privacy loss associated with each record is a public function of that record's value. Unlike other formalisms which provide different privacy losses to different records, PRzCDP's privacy loss depends explicitly on the confidential data. We define our formalism, derive its properties, and propose mechanisms which satisfy PRzCDP that are uniquely suited to publishing skewed or heavy-tailed statistics, where a small number of records contribute substantially to query answers. This targeted relaxation helps overcome the difficulties of applying standard DP to these data products.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.