Papers
Topics
Authors
Recent
2000 character limit reached

Character-level Chinese Backpack Language Models

Published 19 Oct 2023 in cs.CL | (2310.12751v1)

Abstract: The Backpack is a Transformer alternative shown to improve interpretability in English language modeling by decomposing predictions into a weighted sum of token sense components. However, Backpacks' reliance on token-defined meaning raises questions as to their potential for languages other than English, a language for which subword tokenization provides a reasonable approximation for lexical items. In this work, we train, evaluate, interpret, and control Backpack LLMs in character-tokenized Chinese, in which words are often composed of many characters. We find that our (134M parameter) Chinese Backpack LLM performs comparably to a (104M parameter) Transformer, and learns rich character-level meanings that log-additively compose to form word meanings. In SimLex-style lexical semantic evaluations, simple averages of Backpack character senses outperform input embeddings from a Transformer. We find that complex multi-character meanings are often formed by using the same per-character sense weights consistently across context. Exploring interpretability-through control, we show that we can localize a source of gender bias in our Backpacks to specific character senses and intervene to reduce the bias.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.