Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Twisted bilayer graphene revisited: minimal two-band model for low-energy bands (2310.12308v2)

Published 18 Oct 2023 in cond-mat.mes-hall

Abstract: An accurate description of the low-energy electronic bands in twisted bilayer graphene (tBLG) is of great interest due to their relation to correlated electron phases, such as superconductivity and Mott-insulator behavior at half-filling. The paradigmatic model of Bistritzer and MacDonald [PNAS 108, 12233 (2011)], based on the moir\'e pattern formed by tBLG, predicts the existence of "magic angles" at which the Fermi velocity of the low-energy bands goes to zero, and the bands themselves become dispersionless. Here, we reexamine the low-energy bands of tBLG from the ab initio electronic structure perspective, motivated by features related to the atomic relaxation in the moir\'e pattern, namely circular regions of AA stacking, triangular regions of AB/BA stacking and domain walls separating the latter. We find that the bands are never perfectly flat and the Fermi velocity never vanishes, but rather a "magic range" exists where the lower band becomes extremely flat and the Fermi velocity attains a non-zero minimum value. We propose a simple $(2+2)$-band model, comprised of two different pairs of orbitals, both on a honeycomb lattice: the first pair represents the low-energy bands with high localization at the AA sites, while the second pair represents highly dispersive bands associated with domain-wall states. This model gives an accurate description of the low-energy bands with few (13) parameters which are physically motivated and vary smoothly in the magic range. In addition, we derive an effective two-band hamiltonian which also gives an accurate description of the low-energy bands. This minimal two-band model affords a connection to a Hubbard-like description of the occupancy of sub-bands and can be used a basis for exploring correlated states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. R. Bistritzer and A. H. MacDonald, PNAS 108, 12233 (2011).
  2. J. Jung and A. H. MacDonald, Phys. Rev. B 89, 035405 (2014).
  3. S. Fang and E. Kaxiras, Phys. Rev. B 93, 235153 (2016).
  4. F. Guinea and N. R. Walet, Phys. Rev. B 99, 205134 (2019).
  5. J. Kang and O. Vafek, Phys. Rev. B 107, 075408 (2023).
  6. O. Vafek and J. Kang, Phys. Rev. B 107, 075123 (2023).
  7. J. Kang and O. Vafek, Phys. Rev. X 8, 031088 (2018).
  8. Z.-D. Song and B. A. Bernevig, Phys. Rev. Lett. 129, 047601 (2022).
  9. N. N. Nam and M. Koshino, Phys. Rev. B 96, 075311 (2017).
  10. E. Kaxiras and M. S. Duesbery, Phys. Rev. Lett. 70, 3752 (1993).
  11. K. Zhang and E. B. Tadmor, J. Mech. Phys. Solids 112, 225 (2018).
  12. M. Koshino and Y.-W. Son, Phys. Rev. B 100, 075416 (2019).
  13. H. Ochoa, Phys. Rev. B 100, 155426 (2019).
  14. H. Ochoa and R. M. Fernandes, Phys. Rev. Lett. 128, 065901 (2022).
  15. D. Bennett and B. Remez, npj 2D Mater. Appl. 6, 1 (2022).
  16. D. Bennett, Phys. Rev. B 105, 235445 (2020).
  17. E. J. Mele, Phys. Rev. B 84, 235439 (2011).
  18. E. Kaxiras and J. D. Joannopoulos, Quantum Theory of Materials (Cambridge Univeristy Press, 2019).
Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.