Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Quarter-Metal Phases in Multilayer Graphene: Ising-XY and Annular Lifshitz Transitions (2310.10759v2)

Published 16 Oct 2023 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: Recent experiments have uncovered a distinctive magnetic metal in lightly-doped multilayer graphene, coined the \textit{quarter metal}. This quarter metal consolidates all the doped carriers, originally distributed evenly across the four (or twelve) Fermi surfaces of the paramagnetic state, into one expansive Fermi surface by breaking time-reversal and/or inversion symmetry. In this work, we map out a comprehensive mean-field phase diagram of the quarter-metal in rhombohedral trilayer graphene within the four dimensional parameter space spanned by the density $n_e$, interlayer electric potential $U$, external magnetic field parallel to the two-dimensional material plane $B_{\parallel}$ and Kane-Mele spin-orbit coupling $\lambda$. We found an annular Lifshitz phase transition and a Ising-XY phase transition and locate these phase boundaries on the experimental phase diagram. The movement of the Ising-XY phase boundary offers insights into $\lambda$. Our analysis reveals that it moves along the line $\partial n_e/\partial B_{\parallel} \sim -0.5\times 10{11} \text{cm}{-2}\text{T}{-1}$ within the $n_e$-$B_{\parallel}$ parameter space when $\lambda=30\mu$eV. Additionally, we estimated the in-plane spin susceptibility of the valley-Ising quarter-metal $\chi_{_\parallel}\sim 8~\mu\text{eV} ~\text{T}{-2}$. Beyond these quantitative findings, two general principles emerge from our study: 1) The valley-XY quarter metal's dominance in the $n_e-U$ parameter space grows with an increasing number of layers due to the reduce valley polarization variations within the Fermi sea. 2) Layer polarization near the band edge plays an important role in aiding the re-entrance of the paramagnetic state at low density. The insights derived from the quarter metal physics may shed light on the complex behaviors observed in other regions of the phase diagram.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. C. L. Kane and E. J. Mele, Quantum spin hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005).
  2. Y. Zhumagulov, D. Kochan, and J. Fabian, Emergent correlated phases in rhombohedral trilayer graphene induced by proximity spin-orbit and exchange coupling (2023), arXiv:2305.14277 [cond-mat.str-el] .
  3. J. Boettger and S. Trickey, First-principles calculation of the spin-orbit splitting in graphene, Physical Review B 75, 121402 (2007).
  4. K.-I. Imura, Y. Kuramoto, and K. Nomura, Anti-localization of graphene under the substrate electric field, Europhysics Letters 89, 17009 (2010).
  5. J. M. Koh, J. Alicea, and É. Lantagne-Hurtubise, Correlated phases in spin-orbit-coupled rhombohedral trilayer graphene, arXiv preprint arXiv:2306.12486  (2023).
  6. M. Xie and S. Das Sarma, Flavor symmetry breaking in spin-orbit coupled bilayer graphene, Phys. Rev. B 107, L201119 (2023).
  7. E. McCann and M. Koshino, Spin-orbit coupling and broken spin degeneracy in multilayer graphene, Phys. Rev. B 81, 241409 (2010).
  8. C. Herring, Magnetism: Exchange interactions among itinerant electrons (Academic Press, 1966).
  9. M. Das and C. Huang, Unconventional metallic magnetism: Non-analyticity and sign-changing behavior of orbital magnetization in abc trilayer graphene (2023), arXiv:2308.01996 [cond-mat.mes-hall] .
  10. C. Huang, N. Wei, and A. H. MacDonald, Current-driven magnetization reversal in orbital chern insulators, Phys. Rev. Lett. 126, 056801 (2021).
  11. M. Kharitonov, Phase diagram for the ν=0𝜈0\nu=0italic_ν = 0 quantum hall state in monolayer graphene, Phys. Rev. B 85, 155439 (2012).
  12. In preparation, Guopeng Chunli.
  13. E. McCann and M. Koshino, The electronic properties of bilayer graphene, Reports on Progress in physics 76, 056503 (2013).
  14. D. Kochan, S. Irmer, and J. Fabian, Model spin-orbit coupling hamiltonians for graphene systems, Phys. Rev. B 95, 165415 (2017).
  15. S. Konschuh, M. Gmitra, and J. Fabian, Tight-binding theory of the spin-orbit coupling in graphene, Phys. Rev. B 82, 245412 (2010).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.