Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A non-asymptotic analysis of the single component PLS regression (2310.10115v1)

Published 16 Oct 2023 in math.ST and stat.TH

Abstract: This paper investigates some theoretical properties of the Partial Least Square (PLS) method. We focus our attention on the single component case, that provides a useful framework to understand the underlying mechanism. We provide a non-asymptotic upper bound on the quadratic loss in prediction with high probability in a high dimensional regression context. The bound is attained thanks to a preliminary test on the first PLS component. In a second time, we extend these results to the sparse partial least squares (sPLS) approach. In particular, we exhibit upper bounds similar to those obtained with the lasso algorithm, up to an additional restricted eigenvalue constraint on the design matrix.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube