Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SGA: A Graph Augmentation Method for Signed Graph Neural Networks (2310.09705v1)

Published 15 Oct 2023 in cs.LG and cs.SI

Abstract: Signed Graph Neural Networks (SGNNs) are vital for analyzing complex patterns in real-world signed graphs containing positive and negative links. However, three key challenges hinder current SGNN-based signed graph representation learning: sparsity in signed graphs leaves latent structures undiscovered, unbalanced triangles pose representation difficulties for SGNN models, and real-world signed graph datasets often lack supplementary information like node labels and features. These constraints limit the potential of SGNN-based representation learning. We address these issues with data augmentation techniques. Despite many graph data augmentation methods existing for unsigned graphs, none are tailored for signed graphs. Our paper introduces the novel Signed Graph Augmentation framework (SGA), comprising three main components. First, we employ the SGNN model to encode the signed graph, extracting latent structural information for candidate augmentation structures. Second, we evaluate these candidate samples (edges) and select the most beneficial ones for modifying the original training set. Third, we propose a novel augmentation perspective that assigns varying training difficulty to training samples, enabling the design of a new training strategy. Extensive experiments on six real-world datasets (Bitcoin-alpha, Bitcoin-otc, Epinions, Slashdot, Wiki-elec, and Wiki-RfA) demonstrate that SGA significantly improves performance across multiple benchmarks. Our method outperforms baselines by up to 22.2% in AUC for SGCN on Wiki-RfA, 33.3% in F1-binary, 48.8% in F1-micro, and 36.3% in F1-macro for GAT on Bitcoin-alpha in link sign prediction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Zeyu Zhang (143 papers)
  2. Shuyan Wan (5 papers)
  3. Sijie Wang (21 papers)
  4. Xianda Zheng (3 papers)
  5. Xinrui Zhang (13 papers)
  6. Kaiqi Zhao (21 papers)
  7. Jiamou Liu (53 papers)
  8. Dong Hao (23 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.