Papers
Topics
Authors
Recent
2000 character limit reached

Configuration Validation with Large Language Models

Published 15 Oct 2023 in cs.SE, cs.AI, and cs.OS | (2310.09690v2)

Abstract: Misconfigurations are major causes of software failures. Existing practices rely on developer-written rules or test cases to validate configurations, which are expensive. Machine learning (ML) for configuration validation is considered a promising direction, but has been facing challenges such as the need of large-scale field data and system-specific models. Recent advances in LLMs show promise in addressing some of the long-lasting limitations of ML-based configuration validation. We present a first analysis on the feasibility and effectiveness of using LLMs for configuration validation. We empirically evaluate LLMs as configuration validators by developing a generic LLM-based configuration validation framework, named Ciri. Ciri employs effective prompt engineering with few-shot learning based on both valid configuration and misconfiguration data. Ciri checks outputs from LLMs when producing results, addressing hallucination and nondeterminism of LLMs. We evaluate Ciri's validation effectiveness on eight popular LLMs using configuration data of ten widely deployed open-source systems. Our analysis (1) confirms the potential of using LLMs for configuration validation, (2) explores design space of LLMbased validators like Ciri, and (3) reveals open challenges such as ineffectiveness in detecting certain types of misconfigurations and biases towards popular configuration parameters.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.