Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unveiling UV/IR Mixing via Symmetry Defects: A View from Topological Entanglement Entropy (2310.09425v4)

Published 13 Oct 2023 in cond-mat.str-el and quant-ph

Abstract: Some topological lattice models in two spatial dimensions exhibit intricate lattice size dependence in their ground state degeneracy (GSD). This and other features such as the position-dependent anyonic excitations are manifestations of UV/IR mixing. In the first part of this paper, we perform an exact calculation of the topological entanglement entropy (TEE) for a specific model, the rank-2 toric code. This analysis includes both contractible and non-contractible boundaries, with the minimum entropy states identified specifically for non-contractible boundaries. Our results show that TEE for a contractible boundary remains independent of lattice size, whereas TEE for non-contractible boundaries, similarly to the GSD, shows intricate lattice-size dependence. In the latter part of the paper we focus on the fact that the rank-2 toric code is an example of a translation symmetry-enriched topological phase, and show that viewing distinct lattice size as a consequence of different translation symmetry defects can explain both our TEE results and the GSD of the rank-2 toric code. Our work establishes the translation symmetry defect framework as a robust description of the UV/IR mixing in topological lattice models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. X.-G. Wen, Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford University Press, 2007).
  2. A. Kitaev, Annals of Physics 303, 2 (2003).
  3. X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
  4. S.-P. Kou and X.-G. Wen, Phys. Rev. B 80, 224406 (2009).
  5. A. M. Essin and M. Hermele, Phys. Rev. B 87, 104406 (2013).
  6. A. Mesaros and Y. Ran, Phys. Rev. B 87, 155115 (2013).
  7. Y.-M. Lu and A. Vishwanath, Phys. Rev. B 93, 155121 (2016).
  8. X. Chen, Reviews in Physics 2, 3 (2017).
  9. X.-G. Wen, Phys. Rev. Lett. 90, 016803 (2003).
  10. Y.-Z. You and X.-G. Wen, Phys. Rev. B 86, 161107 (2012).
  11. S. D. Pace and X.-G. Wen, Phys. Rev. B 106, 045145 (2022).
  12. G. Delfino, C. Chamon,  and Y. You, “2d fractons from gauging exponential symmetries,”  (2023b), arXiv:2306.17121 [cond-mat.str-el] .
  13. H. Ebisu, Phys. Rev. B 107, 125154 (2023a).
  14. H. Ebisu, “Entanglement entropy of higher rank topological phases,”  (2023b), arXiv:2302.11468 [cond-mat.str-el] .
  15. M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).
  16. A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
  17. D. Bulmash and M. Barkeshli, Phys. Rev. B 97, 235112 (2018).
  18. V. Turaev, “Homotopy field theory in dimension 3 and crossed group-categories,”  (2000), arXiv:math/0005291 [math.GT] .
  19. See the supplemental material for details.
  20. R. Thorngren and D. V. Else, Phys. Rev. X 8, 011040 (2018).
  21. L. Zou and J. Haah, Phys. Rev. B 94, 075151 (2016).
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.