Fractal Subsystem Symmetries, 't Hooft Anomalies, and UV/IR Mixing (2310.12894v2)
Abstract: In this work, we study unconventional anisotropic topologically ordered phases in $3d$ that manifest type-II fractonic physics along submanifolds. While they behave as usual topological order along a preferred spatial direction, their physics along perpendicular planes is dictated by the presence of fractal subsystem symmetries, completely restricting the mobility of anyonic excitations and their bound states. We consider an explicit lattice model realization of such phases and proceed to study their properties under periodic boundary conditions and, later, in the presence of boundaries. We find that for specific lattice sizes, the system possesses line and fractal membrane symmetries that are mutually anomalous, resulting in a nontrivially gapped ground state space. This amounts to the spontaneous breaking of the fractal symmetries, implying a subextensive ground state degeneracy. For the remaining system sizes the fractal symmetries are explicitly broken by the periodic boundary conditions, which is intrinsically related to the uniqueness of the ground state. Despite that, the system is still topologically ordered since locally created quasiparticles have nontrivial mutual statistics and, in the presence of boundaries, it still presents anomalous edge modes. The intricate symmetry interplay dictated by the lattice size is a wild manifestation of ultraviolet/infrared (UV/IR) mixing.
- X.-G. Wen, Reviews of Modern Physics 89, 10.1103/RevModPhys.89.041004 (2017), arXiv:1610.03911 [cond-mat.str-el] .
- C. Chamon, Physical Review Letters 94, 10.1103/PhysRevLett.94.040402 (2005), arXiv:cond-mat/0404182 [cond-mat.str-el] .
- S. Bravyi, B. Leemhuis, and B. M. Terhal, Annals of Physics 326, 839 (2011), arXiv:1006.4871 [quant-ph] .
- J. Haah, Physical Review A 83, 10.1103/PhysRevA.83.042330 (2011), arXiv:1101.1962 [quant-ph] .
- S. Vijay, J. Haah, and L. Fu, Physical Review B 92, 235136 (2015), arXiv:1505.02576 [cond-mat.str-el] .
- A. Prem, J. Haah, and R. Nandkishore, Physical Review B 95, 10.1103/PhysRevB.95.155133 (2017), arXiv:1702.02952 [cond-mat.stat-mech] .
- K. Slagle and Y. B. Kim, Physical Review B 96, 10.1103/PhysRevB.96.195139 (2017), arXiv:1708.04619 [cond-mat.str-el] .
- W. Shirley, K. Slagle, and X. Chen, SciPost Physics 6, 10.21468/SciPostPhys.6.1.015 (2019), arXiv:1803.10426 [cond-mat.str-el] .
- W. Shirley, K. Slagle, and X. Chen, Physical Review B 102, 10.1103/PhysRevB.102.115103 (2020), arXiv:1907.09048 [cond-mat.str-el] .
- Y. Fuji, Physical Review B 100, 10.1103/PhysRevB.100.235115 (2019), arXiv:1908.02257 [cond-mat.str-el] .
- W. Fontana, P. Gomes, and C. Chamon, SciPost Physics Core 4, 012 (2021), arXiv:2006.10071 [cond-mat.str-el] .
- W. Fontana, P. Gomes, and C. Chamon, SciPost Physics 12, 064 (2022), arXiv:2103.02713 [cond-mat.str-el] .
- R. M. Nandkishore and M. Hermele, Annual Review of Condensed Matter Physics 10, 295 (2019), arXiv:1803.11196 [cond-mat.str-el] .
- M. Pretko, X. Chen, and Y. You, International Journal of Modern Physics A 35, 2030003 (2020), arXiv:2001.01722 [cond-mat.str-el] .
- S. Vijay, J. Haah, and L. Fu, Physical Review B 94, 10.1103/PhysRevB.94.235157 (2016), arXiv:1603.04442 [cond-mat.str-el] .
- M. Pretko, Physical Review B 95, 10.1103/PhysRevB.95.115139 (2017), arXiv:1604.05329 [cond-mat.str-el] .
- M. Jangjan and M. V. Hosseini, Physical Review B 106, 10.1103/PhysRevB.106.205111 (2022), arXiv:2203.13160 [cond-mat.mes-hall] .
- G. Delfino and Y. You, arXiv e-prints 10.48550/arXiv.2310.09490 (2023), arXiv:2310.09490 [cond-mat.str-el] .
- P. R. S. Gomes, SciPost Physics Lecture Notes 74, 10.21468/SciPostPhysLectNotes.74 (2023), arXiv:2303.01817 [hep-th] .
- T. D. Brennan and S. Hong, arXiv e-prints 10.48550/arXiv.2306.00912 (2023), arXiv:2306.00912 [hep-ph] .
- R. Luo, Q.-R. Wang, and Y.-N. Wang, arXiv e-prints 10.48550/arXiv.2307.09215 (2023), arXiv:2307.09215 [hep-th] .
- X.-G. Wen, Physical Review B 99, 10.1103/PhysRevB.99.205139 (2019), arXiv:1812.02517 [cond-mat.str-el] .
- M. Qi, L. Radzihovsky, and M. Hermele, Annals of Physics 424, 168360 (2021), arXiv:2010.02254 [cond-mat.str-el] .
- B. C. Rayhaun and D. J. Williamson, SciPost Physics 15, 10.21468/SciPostPhys.15.1.017 (2023), arXiv:2112.12735 [cond-mat.str-el] .
- P. Bonderson and C. Nayak, Physical Review B 87, 10.1103/PhysRevB.87.195451 (2013), arXiv:1212.6395 [cond-mat.str-el] .
- J. Huxford, D. X. Nguyen, and Y. B. Kim, arXiv e-prints 10.48550/arXiv.2305.07063 (2023), arXiv:2305.07063 [cond-mat.str-el] .
- J. McGreevy, Annual Review of Condensed Matter Physics 14, 57 (2023), arXiv:2204.03045 [cond-mat.str-el] .
- S. D. Pace and X.-G. Wen, Physical Review B 108, 10.1103/PhysRevB.108.195147 (2023), arXiv:2301.05261 [cond-mat.str-el] .
- A. Cherman and T. Jacobson, arXiv e-prints 10.48550/arXiv.2304.13751 (2023), arXiv:2304.13751 [hep-th] .
- S. Schafer-Nameki, Physics Reports 1063, 1 (2024), arXiv:2305.18296 [hep-th] .
- S.-H. Shao, arXiv e-prints 10.48550/ARXIV.2308.00747 (2023), arXiv:2308.00747 [hep-th] .
- N. Seiberg and S.-H. Shao, SciPost Physics 9, 10.21468/SciPostPhys.9.4.046 (2020), arXiv:2004.00015 [cond-mat.str-el] .
- E. Lake, Physical Review B 105, 10.1103/physrevb.105.075115 (2022), arXiv:2110.02986 [cond-mat.str-el] .
- S. D. Pace and X.-G. Wen, Physical Review B 106, 10.1103/PhysRevB.106.045145 (2022), arXiv:2204.07111 [cond-mat.str-el] .
- H. Watanabe, M. Cheng, and Y. Fuji, Journal of Mathematical Physics 64, 10.1063/5.0134010 (2023), arXiv:2211.00299 [cond-mat.other] .
- M. E. J. Newman and C. Moore, Physical Review E 60, 5068 (1999), arXiv:cond-mat/9707273 [cond-mat.stat-mech] .
- C. Castelnovo and C. Chamon, Philosophical Magazine 92, 304 (2012), arXiv:1108.2051 [cond-mat.str-el] .
- B. Yoshida, Physical Review B 88, 125122 (2013), arXiv:1302.6248 [cond-mat.str-el] .
- D. Bulmash and M. Barkeshli, arXiv e-prints 10.48550/arXiv.1806.01855 (2018), arXiv:1806.01855 [cond-mat.str-el] .
- A. Y. Kitaev, Annals of Physics 303, 2 (2003), arXiv:quant-ph/9707021 [quant-ph] .
- In analogy with the toric code, the two membranes of Eq. (6) correspond to contractible loops and a single membrane corresponds to a non-contractible loop.
- S. Pai and M. Hermele, Physical Review B 100, 10.1103/PhysRevB.100.195136 (2019), arXiv:1903.11625 [cond-mat.str-el] .
- This analysis is also valid for sizes of the form (4). We leave for an upcoming publication a detailed analysis of boundary physics.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.