Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human-in-the-loop Machine Translation with Large Language Model (2310.08908v1)

Published 13 Oct 2023 in cs.CL

Abstract: The LLM has garnered significant attention due to its in-context learning mechanisms and emergent capabilities. The research community has conducted several pilot studies to apply LLMs to machine translation tasks and evaluate their performance from diverse perspectives. However, previous research has primarily focused on the LLM itself and has not explored human intervention in the inference process of LLM. The characteristics of LLM, such as in-context learning and prompt engineering, closely mirror human cognitive abilities in language tasks, offering an intuitive solution for human-in-the-loop generation. In this study, we propose a human-in-the-loop pipeline that guides LLMs to produce customized outputs with revision instructions. The pipeline initiates by prompting the LLM to produce a draft translation, followed by the utilization of automatic retrieval or human feedback as supervision signals to enhance the LLM's translation through in-context learning. The human-machine interactions generated in this pipeline are also stored in an external database to expand the in-context retrieval database, enabling us to leverage human supervision in an offline setting. We evaluate the proposed pipeline using GPT-3.5-turbo API on five domain-specific benchmarks for German-English translation. The results demonstrate the effectiveness of the pipeline in tailoring in-domain translations and improving translation performance compared to direct translation. Additionally, we discuss the results from the following perspectives: 1) the effectiveness of different in-context retrieval methods; 2) the construction of a retrieval database under low-resource scenarios; 3) the observed domains differences; 4) the quantitative analysis of linguistic statistics; and 5) the qualitative analysis of translation cases. The code and data are available at https://github.com/NLP2CT/HIL-MT/.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xinyi Yang (33 papers)
  2. Runzhe Zhan (12 papers)
  3. Derek F. Wong (69 papers)
  4. Junchao Wu (9 papers)
  5. Lidia S. Chao (41 papers)