Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shortcomings of LLMs for Low-Resource Translation: Retrieval and Understanding are Both the Problem (2406.15625v3)

Published 21 Jun 2024 in cs.CL, cs.AI, and cs.LG

Abstract: This work investigates the in-context learning abilities of pretrained LLMs when instructed to translate text from a low-resource language into a high-resource language as part of an automated machine translation pipeline. We conduct a set of experiments translating Southern Quechua to Spanish and examine the informativity of various types of context retrieved from a constrained database of digitized pedagogical materials (dictionaries and grammar lessons) and parallel corpora. Using both automatic and human evaluation of model output, we conduct ablation studies that manipulate (1) context type (morpheme translations, grammar descriptions, and corpus examples), (2) retrieval methods (automated vs. manual), and (3) model type. Our results suggest that even relatively small LLMs are capable of utilizing prompt context for zero-shot low-resource translation when provided a minimally sufficient amount of relevant linguistic information. However, the variable effects of context type, retrieval method, model type, and language-specific factors highlight the limitations of using even the best LLMs as translation systems for the majority of the world's 7,000+ languages and their speakers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sara Court (2 papers)
  2. Micha Elsner (8 papers)
Citations (3)