2000 character limit reached
A linear proof language for second-order intuitionistic linear logic (2310.08517v2)
Published 12 Oct 2023 in cs.LO and math.LO
Abstract: We present a polymorphic linear lambda-calculus as a proof language for second-order intuitionistic linear logic. The calculus includes addition and scalar multiplication, enabling the proof of a linearity result at the syntactic level.
- T. Altenkirch and J. Grattage. A functional quantum programming language. In Proceedings of LICS 2005, pages 249–258, 2005.
- P. Arrighi and A. Díaz-Caro. A System F accounting for scalars. Logical Methods in Computer Science, 8(1:11), 2012.
- The vectorial lambda-calculus. Information and Computation, 254(1):105–139, 2017.
- P. Arrighi and G. Dowek. Lineal: A linear-algebraic lambda-calculus. Logical Methods in Computer Science, 13(1), 2017.
- J. Bénabou. Catégories avec multiplication. Comptes Rendus des Séances de l’Académie des Sciences, 256:1887–1890, 1963.
- G. Boudol. Lambda-calculi for (strict) parallel functions. Information and Computation, 108(1):51–127, 1994.
- K. Chardonnet. Towards a Curry-Howard Correspondence for Quantum Computation. PhD thesis, Université Paris-Saclay, 2023.
- B. Coecke and A. Kissinger. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.
- R. L. Crole. Categories for types. Cambridge University Press, 1993.
- A. Díaz-Caro and G. Dowek. Linear lambda-calculus is linear. In A. Felty, editor, FSCD 2022, volume 228 of LIPIcs, pages 21:1–21:17, 2022.
- A. Díaz-Caro and G. Dowek. Linear lambda-calculus is linear. Draft at arXiv:2201.11221. Long journal version of [10], 2023.
- A. Díaz-Caro and G. Dowek. A new connective in natural deduction, and its application to quantum computing. Theoretical Computer Science, 957:113840, 2023.
- Two linearities for quantum computing in the lambda calculus. BioSystems, 186:104012, 2019.
- Realizability in the unitary sphere. In Proceedings of LICS 2019, pages 1–13, 2019.
- A. Díaz-Caro and O. Malherbe. Semimodules and the (syntactically-)linear lambda calculus. Draft at arXiv:2205.02142, 2022.
- A. Díaz-Caro and B. Petit. Linearity in the non-deterministic call-by-value setting. In L. Ong and R. de Queiroz, editors, WoLLIC 2012, volume 7456 of LNCS, pages 216–231, 2012.
- S. Eilenberg and G. M. Kelly. Closed categories. In S. Eilenberg, D. K. Harrison, S. MacLane, and H. Röhrl, editors, Proceedings of the Conference on Categorical Algebra, pages 421–562, Berlin, Heidelberg, 1966. Springer Berlin Heidelberg.
- J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures dans l’arith-métique d’ordre supérieure. PhD thesis, Université Paris Diderot, France, 1972.
- J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
- P. Maneggia. Models of linear polymorphism. PhD thesis, The University of Birmingham, UK, 2004.
- R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical Computer Science, 192(1):3–29, 1998.
- W. W. Tait. Intensional interpretations of functionals of finite type I. The Journal of Symbolic Logic, 32(2):198–212, 1967.
- L. Vaux. The algebraic lambda calculus. Mathematical Structures in Computer Science, 19(5):1029–1059, 2009.