Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A linear linear lambda-calculus (2201.11221v7)

Published 26 Jan 2022 in cs.LO

Abstract: We present a linearity theorem for a proof language of intuitionistic multiplicative additive linear logic, incorporating addition and scalar multiplication. The proofs in this language are linear in the algebraic sense. This work is part of a broader research program aiming to define a logic with a proof language that forms a quantum programming language.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. T. Altenkirch and J. Grattage. A functional quantum programming language. In Proceedings of LICS 2005, pages 249–258. IEEE, 2005.
  2. P. Arrighi and A. Díaz-Caro. A System F accounting for scalars. Logical Methods in Computer Science, 8(1:11), 2012.
  3. The vectorial lambda-calculus. Information and Computation, 254(1):105–139, 2017.
  4. P. Arrighi and G. Dowek. Lineal: A linear-algebraic lambda-calculus. Logical Methods in Computer Science, 13(1), 2017.
  5. R. Blute. Hopf algebras and linear logic. Mathematical Structures in Computer Science, 6(2):189–217, 1996.
  6. K. Chardonnet. Towards a Curry-Howard Correspondence for Quantum Computation. PhD thesis, Université Paris-Saclay, 2023.
  7. B. Coecke and A. Kissinger. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.
  8. A. Díaz-Caro and G. Dowek. A new connective in natural deduction, and its application to quantum computing. Theoretical Computer Science, 957:113840, 2023.
  9. Two linearities for quantum computing in the lambda calculus. BioSystems, 186:104012, 2019. Postproceedings of TPNC 2017.
  10. Realizability in the unitary sphere. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019), pages 1–13, 2019.
  11. A. Díaz-Caro and O. Malherbe. Quantum control in the unitary sphere: Lambda-𝒮1subscript𝒮1{\mathcal{S}}_{1}caligraphic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and its categorical model. Logical Methods in Computer Science, 18(3:32), 2022.
  12. A. Díaz-Caro and O. Malherbe. Semimodules and the (syntactically-)linear lambda calculus. Draft at arXiv:2205.02142, 2022.
  13. A. Díaz-Caro and B. Petit. Linearity in the non-deterministic call-by-value setting. In L. Ong and R. de Queiroz, editors, Proceedings of WoLLIC 2012, volume 7456 of LNCS, pages 216–231, 2012.
  14. T. Ehrhard. On Köthe sequence spaces and linear logic. Mathematical Structures in Computer Science, 12(5):579–623, 2002.
  15. J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures dans l’arithmétique d’ordre supérieur. PhD thesis, Université de Paris 7, 1972.
  16. J.-Y. Girard. Linear logic. Theoreoretical Computer Science, 50:1–102, 1987.
  17. J.-Y. Girard. Coherent Banach spaces: A continuous denotational semantics. Theoretical Computer Science, 227(1-2):275–297, 1999.
  18. R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical Computer Science, 192(1):3–29, 1998.
  19. P. Selinger and B. Valiron. A lambda calculus for quantum computation with classical control. Mathematical Structures in Computer Science, 16(3):527–552, 2006.
  20. L. Vaux. The algebraic lambda calculus. Mathematical Structures in Computer Science, 19(5):1029–1059, 2009.
  21. M. Zorzi. On quantum lambda calculi: a foundational perspective. Mathematical Structures in Computer Science, 26(7):1107–1195, 2016.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com