Meaning and identity of proofs in a bilateralist setting: A two-sorted typed lambda-calculus for proofs and refutations (2307.01079v2)
Abstract: In this paper I will develop a lambda-term calculus, lambda-2Int, for a bi-intuitionistic logic and discuss its implications for the notions of sense and denotation of derivations in a bilateralist setting. Thus, I will use the Curry-Howard correspondence, which has been well-established between the simply typed lambda-calculus and natural deduction systems for intuitionistic logic, and apply it to a bilateralist proof system displaying two derivability relations, one for proving and one for refuting. The basis will be the natural deduction system of Wansing's bi-intuitionistic logic 2Int, which I will turn into a term-annotated form. Therefore, we need a type theory that extends to a two-sorted typed lambda-calculus. I will present such a term-annotated proof system for 2Int and prove a Dualization Theorem relating proofs and refutations in this system. On the basis of these formal results I will argue that this gives us interesting insights into questions about sense and denotation as well as synonymy and identity of proofs from a bilateralist point of view.
- \APACinsertmetastarAyhan2021a{APACrefauthors}Ayhan, S. \APACrefYearMonthDay2021\BCnt1. \BBOQ\APACrefatitleUniqueness of Logical Connectives in a Bilateralist Setting Uniqueness of logical connectives in a bilateralist setting.\BBCQ \BIn M. Blicha \BBA I. Sedlár (\BEDS), \APACrefbtitleThe Logica Yearbook 2020 The Logica Yearbook 2020 (\BPGS 1–16). \APACaddressPublisherLondonCollege Publications. \PrintBackRefs\CurrentBib
- \APACinsertmetastarAyhan2021b{APACrefauthors}Ayhan, S. \APACrefYearMonthDay2021\BCnt2. \BBOQ\APACrefatitleWhat is the meaning of proofs? A Fregean distinction in proof-theoretic semantics What is the meaning of proofs? A Fregean distinction in proof-theoretic semantics.\BBCQ \APACjournalVolNumPagesJournal of Philosophical Logic50571–591. {APACrefDOI} \doihttps://doi.org/10.1007/s10992-020-09577-2 \PrintBackRefs\CurrentBib
- \APACinsertmetastarAyhan2023SI{APACrefauthors}Ayhan, S. (\BED). \APACrefYearMonthDay2023\BCnt1. \APACrefbtitleBilateralism and Proof-Theoretic Semantics. Bilateralism and proof-theoretic semantics. \APACaddressPublisherSpecial Issue ofBulletin of the Section of Logic, 52(2/3). \PrintBackRefs\CurrentBib
- \APACinsertmetastarAyhan2023I{APACrefauthors}Ayhan, S. \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleIntroduction: Bilateralism and Proof-Theoretic Semantics (Part I & Part II) Introduction: Bilateralism and Proof-Theoretic Semantics (Part I & Part II).\BBCQ \APACjournalVolNumPagesBulletin of the Section of Logic522&3101–108; 267–274. {APACrefDOI} \doihttps://doi.org/10.18778/0138-0680.2023.12 \PrintBackRefs\CurrentBib
- \APACinsertmetastarAyhan2024b{APACrefauthors}Ayhan, S. \APACrefYearMonthDaySubmitted. \BBOQ\APACrefatitleComparing sense and denotation in bilateralist proof systems for proofs and refutations Comparing sense and denotation in bilateralist proof systems for proofs and refutations.\BBCQ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleOn synonymy in proof-theoretic semantics. The case of 2Int On synonymy in proof-theoretic semantics. The case of 2Int.\BBCQ \APACjournalVolNumPagesBulletin of the Section of Logic522187–237. {APACrefDOI} \doihttps://doi.org/10.18778/0138-0680.2023.18 \PrintBackRefs\CurrentBib
- \APACinsertmetastarBarendregt1992{APACrefauthors}Barendregt, H. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleLambda Calculi with Types Lambda calculi with types.\BBCQ \BIn S. Abramsky, D\BPBIM. Gabbay\BCBL \BBA T\BPBIS\BPBIE. Maibaum (\BEDS), \APACrefbtitleHandbook of Logic in Computer Science Handbook of logic in computer science (\BVOL 2, \BPGS 117–309). \APACaddressPublisherOxfordOxford University Press. \PrintBackRefs\CurrentBib
- \APACinsertmetastarDummett1973{APACrefauthors}Dummett, M. \APACrefYear1973. \APACrefbtitleFrege: Philosophy of Language Frege: Philosophy of language. \APACaddressPublisherNew YorkHarper & Row. \PrintBackRefs\CurrentBib
- \APACinsertmetastarFerguson2020{APACrefauthors}Ferguson, T\BPBIM. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleExplicit analyses of proof/refutation interaction for constructible falsity and Heyting-Brouwer logic Explicit analyses of proof/refutation interaction for constructible falsity and Heyting-Brouwer logic.\BBCQ \APACjournalVolNumPagesJournal of Logic and Computation3081505–1540. {APACrefDOI} \doihttps://doi.org/10.1093/logcom/exaa047 \PrintBackRefs\CurrentBib
- \APACinsertmetastarFrancez2015{APACrefauthors}Francez, N. \APACrefYear2015. \APACrefbtitleProof-theoretic semantics Proof-theoretic semantics. \APACaddressPublisherLondonCollege Publications. \PrintBackRefs\CurrentBib
- \APACinsertmetastarFriedman1975{APACrefauthors}Friedman, H. \APACrefYearMonthDay1975. \BBOQ\APACrefatitleEquality between functionals Equality between functionals.\BBCQ \BIn R. Parikh (\BED), \APACrefbtitleLogic colloquium: Lecture notes in mathematics Logic colloquium: Lecture notes in mathematics (\BVOL 453, \BPGS 23–37). \APACaddressPublisherBerlin/HeidelbergSpringer. \PrintBackRefs\CurrentBib
- \APACinsertmetastarGirard1989{APACrefauthors}Girard, J\BHBIY. \APACrefYear1989. \APACrefbtitleProofs and Types Proofs and types. \APACaddressPublisherCambridgeCambridge University Press. \PrintBackRefs\CurrentBib
- \APACinsertmetastarHorty2007{APACrefauthors}Horty, J. \APACrefYear2007. \APACrefbtitleFrege on Definitions: A Case Study of Semantic Content Frege on definitions: A case study of semantic content. \APACaddressPublisherOxfordOxford University Press. \PrintBackRefs\CurrentBib
- \APACinsertmetastarHorwich2005{APACrefauthors}Horwich, P. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleThe Frege-Geach Point The Frege-Geach Point.\BBCQ \APACjournalVolNumPagesPhilosophical Issues1578–93. \PrintBackRefs\CurrentBib
- \APACinsertmetastarHumberstone2000{APACrefauthors}Humberstone, L. \APACrefYearMonthDay2000. \BBOQ\APACrefatitleThe Revival of Rejective Negation The revival of rejective negation.\BBCQ \APACjournalVolNumPagesJournal of Philosophical Logic29331–381. \PrintBackRefs\CurrentBib
- \APACinsertmetastarHumberstone2011{APACrefauthors}Humberstone, L. \APACrefYear2011. \APACrefbtitleThe Connectives The connectives. \APACaddressPublisherCambridge, MA/LondonMIT Press. \PrintBackRefs\CurrentBib
- \APACinsertmetastarHumberstone2020a{APACrefauthors}Humberstone, L. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleExplicating Logical Independence Explicating logical independence.\BBCQ \APACjournalVolNumPagesJournal of Philosophical Logic49135–218. \PrintBackRefs\CurrentBib
- \APACinsertmetastarKreisel1971{APACrefauthors}Kreisel, G. \APACrefYearMonthDay1971. \BBOQ\APACrefatitleA survey of proof theory II A survey of proof theory II.\BBCQ \BIn J\BPBIE. Fenstad (\BED), \APACrefbtitleProceedings of the Second Scandinavian Logic Symposium Proceedings of the Second Scandinavian Logic Symposium (\BPGS 109–170). \APACaddressPublisherAmsterdamNorth Holland. \PrintBackRefs\CurrentBib
- \APACinsertmetastarLopez{APACrefauthors}López-Escobar, E\BPBIG\BPBIK. \APACrefYearMonthDay1972. \BBOQ\APACrefatitleRefutability and elementary number theory Refutability and elementary number theory.\BBCQ \APACjournalVolNumPagesIndigationes Mathematicae754362–374. \PrintBackRefs\CurrentBib
- \APACinsertmetastarMartin1975{APACrefauthors}Martin-Löf, P. \APACrefYearMonthDay1975. \BBOQ\APACrefatitleAbout models for intuitionistic type theories and the notion of definitional equality About models for intuitionistic type theories and the notion of definitional equality.\BBCQ \BIn S. Kanger (\BED), \APACrefbtitleProceedings of the Third Scandinavian Logic Symposium Proceedings of the Third Scandinavian Logic Symposium (\BPGS 81–109). \APACaddressPublisherAmsterdamNorth Holland. \PrintBackRefs\CurrentBib
- \APACinsertmetastarNelson{APACrefauthors}Nelson, D. \APACrefYearMonthDay1949. \BBOQ\APACrefatitleConstructible Falsity Constructible falsity.\BBCQ \APACjournalVolNumPagesThe Journal of Symbolic Logic14(1)16–26. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleA proof-theoretic study of bi-intuitionistic propositional sequent calculus A proof-theoretic study of bi-intuitionistic propositional sequent calculus.\BBCQ \APACjournalVolNumPagesJournal of Logic and Computation28(1)165–202. {APACrefDOI} \doihttps://doi.org/10.1093/logcom/exx044 \PrintBackRefs\CurrentBib
- \APACinsertmetastarPrawitz1971{APACrefauthors}Prawitz, D. \APACrefYearMonthDay1971. \BBOQ\APACrefatitleIdeas and results in proof theory Ideas and results in proof theory.\BBCQ \BIn J\BPBIE. Fenstad (\BED), \APACrefbtitleProceedings of the Second Scandinavian Logic Symposium Proceedings of the Second Scandinavian Logic Symposium (\BPGS 235–307). \APACaddressPublisherAmsterdamNorth Holland. \PrintBackRefs\CurrentBib
- \APACinsertmetastarPrawitz1973{APACrefauthors}Prawitz, D. \APACrefYearMonthDay1973. \BBOQ\APACrefatitleTowards A Foundation of A General Proof Theory Towards a foundation of a general proof theory.\BBCQ \BIn P. Suppes, L. Henkin, A. Joja\BCBL \BBA G\BPBIC. Moisil (\BEDS), \APACrefbtitleLogic, Methodology, and Philosophy of Science IV Logic, methodology, and philosophy of science IV (\BPGS 225–250). \APACaddressPublisherAmsterdamNorth Holland. \PrintBackRefs\CurrentBib
- \APACinsertmetastarPrice1983{APACrefauthors}Price, H. \APACrefYearMonthDay1983. \BBOQ\APACrefatitleSense, Assertion, Dummett and Denial Sense, assertion, Dummett and denial.\BBCQ \APACjournalVolNumPagesMind92366161–173. \PrintBackRefs\CurrentBib
- \APACinsertmetastarRauszer{APACrefauthors}Rauszer, C. \APACrefYearMonthDay1974. \BBOQ\APACrefatitleA formalization of the propositional calculus of H-B logic A formalization of the propositional calculus of H-B logic.\BBCQ \APACjournalVolNumPagesStudia Logica33123–34. {APACrefDOI} \doihttps://doi.org/10.1007/BF02120864 \PrintBackRefs\CurrentBib
- \APACinsertmetastarRestall1997{APACrefauthors}Restall, G. \APACrefYearMonthDay1997. \APACrefbtitleExtending intuitionistic logic with subtraction. Extending intuitionistic logic with subtraction. \APACrefnoteOnline Notes {APACrefDOI} \doihttps://consequently.org/papers/extendingj.pdf \PrintBackRefs\CurrentBib
- \APACinsertmetastarRumfitt2000{APACrefauthors}Rumfitt, I. \APACrefYearMonthDay2000. \BBOQ\APACrefatitle‘Yes’ and ‘No’ ‘Yes’ and ‘No’.\BBCQ \APACjournalVolNumPagesMind109436781–823. \PrintBackRefs\CurrentBib
- \APACinsertmetastarPSH2016{APACrefauthors}Schroeder-Heister, P. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleOpen Problems in Proof-Theoretic Semantics Open problems in proof-theoretic semantics.\BBCQ \BIn T. Piecha \BBA P. Schroeder-Heister (\BEDS), \APACrefbtitleAdvances in Proof-Theoretic Semantics Advances in proof-theoretic semantics (\BPGS 253–283). \APACaddressPublisherSpringer. \PrintBackRefs\CurrentBib
- \APACinsertmetastarsep-proof-theoretic-semantics{APACrefauthors}Schroeder-Heister, P. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleProof-Theoretic Semantics Proof-theoretic semantics.\BBCQ \BIn E\BPBIN. Zalta \BBA U. Nodelman (\BEDS), \APACrefbtitleThe Stanford Encyclopedia of Philosophy The Stanford Encyclopedia of Philosophy (\PrintOrdinalFall 2023 \BEd). \APACaddressPublisherMetaphysics Research Lab, Stanford University. {APACrefDOI} \doihttps://plato.stanford.edu/archives/fall2023/entries/proof-theoretic-semantics/ \PrintBackRefs\CurrentBib
- \APACinsertmetastarSmiley1996{APACrefauthors}Smiley, T. \APACrefYearMonthDay1996. \BBOQ\APACrefatitleRejection Rejection.\BBCQ \APACjournalVolNumPagesAnalysis5611–9. \PrintBackRefs\CurrentBib
- \APACrefYear2006. \APACrefbtitleLectures on the Curry-Howard Isomorphism Lectures on the Curry-Howard Isomorphism. \APACaddressPublisherAmsterdamElsevier Science. \PrintBackRefs\CurrentBib
- \APACinsertmetastarStatman{APACrefauthors}Statman, R. \APACrefYearMonthDay1983. \BBOQ\APACrefatitleLambda-definable functionals and beta-eta-conversion Lambda-definable functionals and beta-eta-conversion.\BBCQ \APACjournalVolNumPagesArchiv für Mathematische Logik2321–26. \PrintBackRefs\CurrentBib
- \APACinsertmetastarTranchini2016{APACrefauthors}Tranchini, L. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleProof-theoretic semantics, paradoxes and the distinction between sense and denotation Proof-theoretic semantics, paradoxes and the distinction between sense and denotation.\BBCQ \APACjournalVolNumPagesJournal of Logic and Computation262495–512. \PrintBackRefs\CurrentBib
- \APACinsertmetastarTranchini2021{APACrefauthors}Tranchini, L. \APACrefYearMonthDay2021. \BBOQ\APACrefatitleProof-theoretic harmony: towards an intensional account Proof-theoretic harmony: towards an intensional account.\BBCQ \APACjournalVolNumPagesSynthese198Suppl 5S1145–S1176. {APACrefDOI} \doihttps://doi.org/10.1007/s11229-016-1200-3 \PrintBackRefs\CurrentBib
- \APACinsertmetastarWansing2005{APACrefauthors}Wansing, H. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleConnexive modal logic Connexive modal logic.\BBCQ \BIn R. Schmidt, I. Pratt-Hartmann, M. Reynolds\BCBL \BBA H. Wansing (\BEDS), \APACrefbtitleAdvances in Modal Logic Advances in modal logic (\BVOL 5, \BPGS 367–383). \APACaddressPublisherLondonCollege Publications. \PrintBackRefs\CurrentBib
- \APACinsertmetastarWansing2016a{APACrefauthors}Wansing, H. \APACrefYearMonthDay2016\BCnt1. \BBOQ\APACrefatitleFalsification, natural deduction and bi-intuitionistic logic Falsification, natural deduction and bi-intuitionistic logic.\BBCQ \APACjournalVolNumPagesJournal of Logic and Computation261425–450. {APACrefDOI} \doihttps://doi.org/10.1093/logcom/ext035 \PrintBackRefs\CurrentBib
- \APACinsertmetastarWansing2016b{APACrefauthors}Wansing, H. \APACrefYearMonthDay2016\BCnt2. \BBOQ\APACrefatitleNatural Deduction for Bi-Connexive Logic and a Two-Sorted Typed Lambda-Calculus Natural deduction for bi-connexive logic and a two-sorted typed lambda-calculus.\BBCQ \APACjournalVolNumPagesIFCoLog Journal of Logics and their Applications33413–439. \PrintBackRefs\CurrentBib
- \APACinsertmetastarWansing2016c{APACrefauthors}Wansing, H. \APACrefYearMonthDay2016\BCnt3. \BBOQ\APACrefatitleOn Split Negation, Strong Negation, Information, Falsification, and Verification On split negation, strong negation, information, falsification, and verification.\BBCQ \BIn K. Bimbó (\BED), \APACrefbtitleJ. Michael Dunn on Information Based Logics. Outstanding Contributions to Logic J. Michael Dunn on information based logics. Outstanding contributions to logic (\BVOL 8, \BPGS 161–189). \APACaddressPublisherSpringer. \PrintBackRefs\CurrentBib
- \APACinsertmetastarWansing2017{APACrefauthors}Wansing, H. \APACrefYearMonthDay2017. \BBOQ\APACrefatitleA more general general proof theory A more general general proof theory.\BBCQ \APACjournalVolNumPagesJournal of Applied Logic2523–46. {APACrefDOI} \doihttps://doi.org/10.1016/j.jal.2017.01.002 \PrintBackRefs\CurrentBib
- \APACinsertmetastarWideback{APACrefauthors}Widebäck, F. \APACrefYear2001. \APACrefbtitleIdentity of Proofs Identity of proofs. \APACaddressPublisherStockholmAlmquist & Wiksell International. \PrintBackRefs\CurrentBib
- \APACinsertmetastarZeilberger2008{APACrefauthors}Zeilberger, N. \APACrefYearMonthDay2008. \BBOQ\APACrefatitleOn the unity of duality On the unity of duality.\BBCQ \APACjournalVolNumPagesAnnals of Pure and Applied Logic15366–96. \PrintBackRefs\CurrentBib
- \APACinsertmetastarZeilberger2009{APACrefauthors}Zeilberger, N. \APACrefYear2009. \APACrefbtitleThe Logical Basis of Evaluation Order and Pattern-Matching The logical basis of evaluation order and pattern-matching \APACtypeAddressSchoolPh.D. dissertation. \APACaddressSchoolSchool of Computer Science, Carnegie Mellon University. \PrintBackRefs\CurrentBib