Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Semidefinite Programming with Thermal Pure Quantum States (2310.07774v1)

Published 11 Oct 2023 in quant-ph

Abstract: Semidefinite programs (SDPs) are a particular class of convex optimization problems with applications in combinatorial optimization, operational research, and quantum information science. Seminal work by Brand~{a}o and Svore shows that a ``quantization'' of the matrix multiplicative-weight algorithm can provide approximate solutions to SDPs quadratically faster than the best classical algorithms by using a quantum computer as a Gibbs-state sampler. We propose a modification of this quantum algorithm and show that a similar speedup can be obtained by replacing the Gibbs-state sampler with the preparation of thermal pure quantum (TPQ) states. While our methodology incurs an additional problem-dependent error, which decreases as the problem size grows, it avoids the preparation of purified Gibbs states, potentially saving a number of ancilla qubits. In addition, we identify a spectral condition which, when met, reduces the resources further, and shifts the computational bottleneck from Gibbs state preparation to ground-state energy estimation. With classical state-vector simulations, we verify the efficiency of the algorithm for particular cases of Hamiltonian learning problems. We are able to obtain approximate solutions for two-dimensional spinless Hubbard and one-dimensional Heisenberg XXZ models for sizes of up to $N=2{10}$ variables. For the Hubbard model, we provide an estimate of the resource requirements of our algorithm, including the number of Toffoli gates and the number of qubits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. Martin Skutella. “Convex Quadratic and Semidefinite Programming Relaxations in Scheduling”. Journal of ACM48 (2001).
  2. “Guaranteed Globally Optimal Planar Pose Graph and Landmark SLAM via Sparse-Bounded Sums-of-Squares Programming”. 2019 International Conference on Robotics and Automation (ICRA) (2019). arXiv:1809.07744.
  3. “Semidefinite Programming in Quantum Information Science”. IOP Publishing.  (2023).
  4. “Quantum Speed-Ups for Solving Semidefinite Programs”. 2017 IEEE 58th Annual Symposium on Foundations of Computer SciencePages 415–426 (2017). arXiv:1609.05537.
  5. Joran van Apeldoorn and András Gilyén. “Improvements in Quantum SDP-Solving with Applications”. 46th International Colloquium on Automata, Languages, and Programming132 (2019).
  6. “Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning”. 46th International Colloquium on Automata, Languages, and Programming132 (2019). arXiv:1710.02581.
  7. “Quantum SDP-Solvers: Better upper and lower bounds”. Quantum 4, 230 (2020).
  8. “A Quantum Interior Point Method for LPs and SDPs”. ACM Transactions on Quantum Computing (2020). arXiv:1808.09266.
  9. “Quantum Interior Point Methods for Semidefinite Optimization”. Quantum 7, 1110 (2023). arXiv:2112.06025.
  10. “Variational Quantum Algorithms for Semidefinite Programming” (2021). arXiv:2112.08859.
  11. “Noisy intermediate-scale quantum algorithm for semidefinite programming”. Phys. Rev. A 105, 052445 (2022).
  12. “Quantum Goemans-Williamson Algorithm with the Hadamard Test and Approximate Amplitude Constraints”. Quantum 7, 1057 (2023). arXiv:2206.14999.
  13. “Barren plateaus in quantum neural network training landscapes”. Nature Communications 9, 4812 (2018).
  14. “Thermal Pure Quantum States at Finite Temperature”. Phys. Rev. Lett. 108, 240401 (2012).
  15. “Exploring finite temperature properties of materials with quantum computers”. Scientific Reports13 (2023).
  16. “Predicting Gibbs-State Expectation Values with Pure Thermal Shadows”. PRX Quantum4 (2023).
  17. “Quantum Singular Value Transformation and beyond: Exponential Improvements for Quantum Matrix Arithmetics”. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019). arXiv:1806.01838.
  18. “Grand Unification of Quantum Algorithms”. PRX Quantum 2, 040203 (2021).
  19. “Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming”. J. ACM 42, 1115–1145 (1995).
  20. “Faster quantum and classical SDP approximations for quadratic binary optimization”. Quantum 6, 625 (2022).
  21. “Solving the semidefinite relaxation of QUBOs in matrix multiplication time, and faster with a quantum computer” (2023). arXiv:2301.04237.
  22. “A Faster Cutting Plane Method and its Implications for Combinatorial and Convex Optimization”. 2015 IEEE 56th Annual Symposium on Foundations of Computer SciencePages 1049–1065 (2015). arXiv:1508.04874.
  23. “Recent Scalability Improvements for Semidefinite Programming with Applications in Machine Learning, Control, and Robotics”. Annual Review of Control, Robotics, and Autonomous Systems 3, 331–360 (2020).
  24. “Fast algorithms for approximate semidefinite programming using the multiplicative weights update method”. 46th Annual IEEE Symposium on Foundations of Computer SciencePages 339–348 (2005).
  25. “Lower Bounds on the Size of Semidefinite Programming Relaxations”. Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of ComputingPage 567–576 (2015).
  26. E. T. Jaynes. “Information Theory and Statistical Mechanics”. Phys. Rev. 106, 620–630 (1957).
  27. “A quantum–quantum Metropolis algorithm”. Proceedings of the National Academy of Sciences 109, 754–759 (2012).
  28. “Quantum Algorithms for Gibbs Sampling and Hitting-Time Estimation”. Quantum Info. Comput. 17, 41–64 (2017). arXiv:1603.02940.
  29. “Sampling from the Thermal Quantum Gibbs State and Evaluating Partition Functions with a Quantum Computer”. Physical Review Letters103 (2009).
  30. “Dissipative Quantum Gibbs Sampling” (2023). arXiv:2304.04526.
  31. “Quantum Thermal State Preparation” (2023). arXiv:2303.18224.
  32. “Canonical Typicality”. Phys. Rev. Lett. 96, 050403 (2006).
  33. “Entanglement and the foundations of statistical mechanics”. Nature Physics 2, 1050–1057 (2006).
  34. Peter Reimann. “Typicality for Generalized Microcanonical Ensembles”. Phys. Rev. Lett. 99, 160404 (2007).
  35. “Canonical Thermal Pure Quantum State”. Phys. Rev. Lett. 111, 010401 (2013).
  36. “Random State Technology”. Journal of the Physical Society of Japan 90, 012001 (2021).
  37. “Improved simulation of stabilizer circuits”. Phys. Rev. A 70, 052328 (2004).
  38. “A Dynamical Approach to Random Matrix Theory”. Volume 28. American Mathematical Soc.  (2017).
  39. “Sparse random Hamiltonians are quantumly easy” (2023). arXiv:2302.03394.
  40. “A Quantum Hamiltonian Simulation Benchmark”. npj Quantum Information8 (2022).
  41. “Realization of quantum signal processing on a noisy quantum computer”. npj Quantum Information 9, 93 (2023).
  42. “Experimental quantum channel discrimination using metastable states of a trapped ion” (2023). arXiv:2305.14272.
  43. “Hamiltonian Simulation by Qubitization”. Quantum 3, 163 (2019).
  44. “The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation”. 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019) (2019). arXiv:1804.01973.
  45. “Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrices” (2022). arXiv:2203.10236.
  46. “Quantum State Preparation with Optimal Circuit Depth: Implementations and Applications”. Phys. Rev. Lett. 129, 230504 (2022).
  47. “Block-encoding structured matrices for data input in quantum computing” (2023). arXiv:2302.10949.
  48. Alexander M. Dalzell et al. “Quantum algorithms: A survey of applications and end-to-end complexities” (2023). arXiv:2310.03011.
  49. “Faster Algorithms via Approximation Theory”. Foundations and Trends® in Theoretical Computer Science 9, 125–210 (2014).
  50. “Preparing Ground States of Quantum Many-Body Systems on a Quantum Computer”. Phys. Rev. Lett. 102, 130503 (2009).
  51. “Faster ground state preparation and high-precision ground energy estimation with fewer qubits”. Journal of Mathematical Physics 60, 022202 (2019).
  52. Lin Lin and Yu Tong. “Near-optimal ground state preparation”. Quantum 4, 372 (2020).
  53. Lin Lin and Yu Tong. “Heisenberg-Limited Ground-State Energy Estimation for Early Fault-Tolerant Quantum Computers”. PRX Quantum 3, 010318 (2022).
  54. R. D. Somma and S. Boixo. “Spectral Gap Amplification”. SIAM Journal on Computing 42, 593–610 (2013).
  55. Scott Aaronson. “Shadow Tomography of Quantum States”. Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (2018).
  56. “Hamiltonian Learning and Certification Using Quantum Resources”. Phys. Rev. Lett. 112, 190501 (2014).
  57. “Quantum Variational Learning of the Entanglement Hamiltonian”. Phys. Rev. Lett. 127, 170501 (2021).
  58. “The advantage of quantum control in many-body Hamiltonian learning” (2023). arXiv:2304.07172.
  59. “Sample-efficient learning of interacting quantum systems”. Nature Physics 17, 931–935 (2021).
  60. “Optimal learning of quantum Hamiltonians from high-temperature Gibbs states”. 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) (2022).
  61. “Experimental quantum Hamiltonian learning”. Nature Physics 13, 551–555 (2017).
  62. J. Jaklič and P. Prelovšek. “Lanczos method for the calculation of finite-temperature quantities in correlated systems”. Phys. Rev. B 49, 5065–5068 (1994).
  63. L.N. Trefethen and D. Bau. “Numerical Linear Algebra”. Society for Industrial and Applied Mathematics.  (1997).
  64. “Learning quantum hamiltonians at any temperature in polynomial time” (2023). arXiv:2310.02243.
  65. J. Hubbard. “Electron correlations in narrow energy bands”. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 276, 238–257 (1963).
  66. “The Hubbard Model”. Annual Review of Condensed Matter Physics 13, 239–274 (2022).
  67. W. Heisenberg. “Zur Theorie des Ferromagnetismus”. Zeitschrift für Physik 49, 619–636 (1928).
  68. Fabio Franchini. “An Introduction to Integrable Techniques for One-Dimensional Quantum Systems”. Springer International Publishing.  (2017).
  69. “Predicting many properties of a quantum system from very few measurements”. Nature Physics 16, 1050–1057 (2020).
  70. “Applying quantum algorithms to constraint satisfaction problems”. Quantum 3, 167 (2019).
  71. “Focus beyond Quadratic Speedups for Error-Corrected Quantum Advantage”. PRX Quantum2 (2021).
  72. “On the sample complexity of quantum boltzmann machine learning” (2023). arXiv:2306.14969.
  73. “An Introduction to Random Matrices”. Cambridge University Press.  (2010).
  74. “Sequential measurements, disturbance and property testing”. Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms (2017).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 14 likes.

Upgrade to Pro to view all of the tweets about this paper: