Papers
Topics
Authors
Recent
2000 character limit reached

Local Style Awareness of Font Images

Published 10 Oct 2023 in cs.CV | (2310.06337v1)

Abstract: When we compare fonts, we often pay attention to styles of local parts, such as serifs and curvatures. This paper proposes an attention mechanism to find important local parts. The local parts with larger attention are then considered important. The proposed mechanism can be trained in a quasi-self-supervised manner that requires no manual annotation other than knowing that a set of character images is from the same font, such as Helvetica. After confirming that the trained attention mechanism can find style-relevant local parts, we utilize the resulting attention for local style-aware font generation. Specifically, we design a new reconstruction loss function to put more weight on the local parts with larger attention for generating character images with more accurate style realization. This loss function has the merit of applicability to various font generation models. Our experimental results show that the proposed loss function improves the quality of generated character images by several few-shot font generation models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.