Papers
Topics
Authors
Recent
2000 character limit reached

Gromov-Witten theory of bicyclic pairs (2310.06058v4)

Published 9 Oct 2023 in math.AG

Abstract: A bicyclic pair is a smooth surface equipped with a pair of smooth divisors intersecting in two reduced points. Resolutions of self-nodal curves constitute an important special case. We investigate the logarithmic Gromov-Witten theory of bicyclic pairs. We establish correspondences with local Gromov-Witten theory and open Gromov-Witten theory in all genera, a correspondence with orbifold Gromov-Witten theory in genus zero, and correspondences between all-genus refined Gopakumar-Vafa invariants and refined quiver Donaldson-Thomas invariants. For self-nodal curves in $\mathbb{P}(1,1,r)$ we obtain closed formulae for the genus zero invariants and relate these to the invariants of local curves. We also establish a conceptual relationship between invariants relative a self-nodal plane cubic and invariants relative a smooth plane cubic. The technical heart of the paper is a qualitatively new analysis of the degeneration formula for stable logarithmic maps, involving a tight intertwining of tropical and intersection-theoretic vanishing arguments.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.