Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability Analysis of Non-Linear Classifiers using Gene Regulatory Neural Network for Biological AI (2310.04424v1)

Published 14 Sep 2023 in cs.NE, cs.AI, cs.LG, and q-bio.MN

Abstract: The Gene Regulatory Network (GRN) of biological cells governs a number of key functionalities that enables them to adapt and survive through different environmental conditions. Close observation of the GRN shows that the structure and operational principles resembles an Artificial Neural Network (ANN), which can pave the way for the development of Biological Artificial Intelligence. In particular, a gene's transcription and translation process resembles a sigmoidal-like property based on transcription factor inputs. In this paper, we develop a mathematical model of gene-perceptron using a dual-layered transcription-translation chemical reaction model, enabling us to transform a GRN into a Gene Regulatory Neural Network (GRNN). We perform stability analysis for each gene-perceptron within the fully-connected GRNN sub network to determine temporal as well as stable concentration outputs that will result in reliable computing performance. We focus on a non-linear classifier application for the GRNN, where we analyzed generic multi-layer GRNNs as well as E.Coli GRNN that is derived from trans-omic experimental data. Our analysis found that varying the parameters of the chemical reactions can allow us shift the boundaries of the classification region, laying the platform for programmable GRNNs that suit diverse application requirements.

Summary

We haven't generated a summary for this paper yet.