Postselection-free learning of measurement-induced quantum dynamics (2310.04156v2)
Abstract: We address how one can empirically infer properties of quantum states generated by dynamics involving measurements. Our focus is on many-body settings where the number of measurements is extensive, making brute-force approaches based on postselection intractable due to their exponential sample complexity. We introduce a general-purpose scheme that can be used to infer any property of the post-measurement ensemble of states (e.g. the average entanglement entropy, or frame potential) using a scalable number of experimental repetitions. We first identify a general class of estimable properties that can be directly extracted from experimental data. Then, based on empirical observations of such quantities, we show how one can indirectly infer information about any particular given non-estimable quantity of interest through classical post-processing. Our approach is based on an optimization task, where one asks what are the minimum and maximum values that the desired quantity could possibly take, while ensuring consistency with observations. The true value of this quantity must then lie within a feasible range between these extrema, resulting in two-sided bounds. Narrow feasible ranges can be obtained by using a classical simulation of the device to determine which estimable properties one should measure. Even in cases where this simulation is inaccurate, unambiguous information about the true value of a given quantity realised on the quantum device can be learned. As an immediate application, we show that our method can be used to verify the emergence of quantum state designs in experiments. We identify some fundamental obstructions that in some cases prevent sharp knowledge of a given quantity from being inferred, and discuss what can be learned in cases where classical simulation is too computationally demanding to be feasible.
- D. A. Lidar and T. A. Brun, Quantum error correction (Cambridge university press, 2013).
- R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001).
- R. Raussendorf, D. E. Browne, and H. J. Briegel, Measurement-based quantum computation on cluster states, Phys. Rev. A 68, 022312 (2003).
- Y. Li, X. Chen, and M. P. A. Fisher, Quantum zeno effect and the many-body entanglement transition, Phys. Rev. B 98, 205136 (2018).
- B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019).
- Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Phys. Rev. B 100, 134306 (2019).
- M. Szyniszewski, A. Romito, and H. Schomerus, Entanglement transition from variable-strength weak measurements, Phys. Rev. B 100, 064204 (2019).
- Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101, 104301 (2020).
- W. W. Ho and S. Choi, Exact emergent quantum state designs from quantum chaotic dynamics, Phys. Rev. Lett. 128, 060601 (2022).
- P. W. Claeys and A. Lamacraft, Emergent quantum state designs and biunitarity in dual-unitary circuit dynamics, Quantum 6, 738 (2022).
- L. Piroli, G. Styliaris, and J. I. Cirac, Quantum circuits assisted by local operations and classical communication: Transformations and phases of matter, Phys. Rev. Lett. 127, 220503 (2021).
- Y. Bao, M. Block, and E. Altman, Finite time teleportation phase transition in random quantum circuits (2022), arXiv:2110.06963 [quant-ph] .
- Y. Li and M. P. A. Fisher, Robust decoding in monitored dynamics of open quantum systems with ℤ2subscriptℤ2\mathbbm{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry (2021), arXiv:2108.04274 [quant-ph] .
- X. Feng, B. Skinner, and A. Nahum, Measurement-induced phase transitions on dynamical quantum trees, PRX Quantum 4, 030333 (2023).
- S. J. Garratt, Z. Weinstein, and E. Altman, Measurements conspire nonlocally to restructure critical quantum states, Phys. Rev. X 13, 021026 (2023).
- S. J. Garratt and E. Altman, Probing post-measurement entanglement without post-selection (2023), arXiv:2305.20092 [quant-ph] .
- F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, Efficient quantum pseudorandomness, Phys. Rev. Lett. 116, 170502 (2016).
- M. McGinley and M. Fava, Shadow tomography from emergent state designs in analog quantum simulators (2022), arXiv:2212.02543 [quant-ph] .
- X. Cao, A. Tilloy, and A. D. Luca, Entanglement in a fermion chain under continuous monitoring, SciPost Phys. 7, 024 (2019).
- O. Alberton, M. Buchhold, and S. Diehl, Entanglement transition in a monitored free-fermion chain: From extended criticality to area law, Phys. Rev. Lett. 126, 170602 (2021).
- S. Leontica and M. McGinley, Purification dynamics in a continuous-time hybrid quantum circuit model (2023), arXiv:2308.12003 [quant-ph] .
- J. Dalibard, Y. Castin, and K. Mølmer, Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett. 68, 580 (1992).
- H. M. Wiseman and G. J. Milburn, Interpretation of quantum jump and diffusion processes illustrated on the bloch sphere, Phys. Rev. A 47, 1652 (1993).
- A. Ambainis and J. Emerson, Quantum t𝑡titalic_t-designs: t𝑡titalic_t-wise independence in the quantum world (2007), arXiv:quant-ph/0701126 .
- A. Bose and S. Chatterjee, U-statistics, Mm-estimators and Resampling (Springer, 2018).
- P. R. Halmos, The theory of unbiased estimation, The Annals of Mathematical Statistics 17, 34 (1946).
- P. J. Bickel and E. L. Lehmann, Unbiased estimation in convex families, The Annals of Mathematical Statistics 40, 1523 (1969).
- H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nature Physics 16, 1050 (2020).
- A. J. Scott, Tight informationally complete quantum measurements, J. Phys. A 39, 13507 (2006).
- M. Paini and A. Kalev, An approximate description of quantum states (2019), arXiv:1910.10543 [quant-ph] .
- A. E. Rastegin, Some general properties of unified entropies, Journal of Statistical Physics 143, 1120 (2011).
- A. L. Yuille and A. Rangarajan, The concave-convex procedure (cccp), in Advances in Neural Information Processing Systems, Vol. 14, edited by T. Dietterich, S. Becker, and Z. Ghahramani (MIT Press, 2001).
- S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
- M. A. Nielsen and I. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2010).
- D. Petz, Quantum information theory and quantum statistics (Springer Berlin, 2008).
- D. A. Roberts and B. Yoshida, Chaos and complexity by design, Journal of High Energy Physics 2017, 1 (2017).
- M. Ippoliti and W. W. Ho, Dynamical purification and the emergence of quantum state designs from the projected ensemble, PRX Quantum 4, 030322 (2023).
- H. Kim and D. A. Huse, Ballistic spreading of entanglement in a diffusive nonintegrable system, Phys. Rev. Lett. 111, 127205 (2013).
- B. M. Terhal and D. P. DiVincenzo, Adptive quantum computation, constant depth quantum circuits and arthur-merlin games, Quantum Information and Computation 4, 134 (2004).
- M. Ippoliti and V. Khemani, Postselection-free entanglement dynamics via spacetime duality, Phys. Rev. Lett. 126, 060501 (2021).
- H. Mabuchi, Dynamical identification of open quantum systems, Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, 1103 (1996).
- J. Gambetta and H. M. Wiseman, State and dynamical parameter estimation for open quantum systems, Phys. Rev. A 64, 042105 (2001).
- M. Tsang, Continuous quantum hypothesis testing, Phys. Rev. Lett. 108, 170502 (2012).
- S. Gammelmark and K. Mølmer, Bayesian parameter inference from continuously monitored quantum systems, Phys. Rev. A 87, 032115 (2013).
- S. Gammelmark and K. Mølmer, Fisher information and the quantum cramér-rao sensitivity limit of continuous measurements, Phys. Rev. Lett. 112, 170401 (2014).
- M. McGinley, S. Roy, and S. A. Parameswaran, Absolutely stable spatiotemporal order in noisy quantum systems, Phys. Rev. Lett. 129, 090404 (2022).
- A. J. Friedman, O. Hart, and R. Nandkishore, Measurement-induced phases of matter require feedback (2023), arXiv:2210.07256 [quant-ph] .
- M. Buchhold, T. Müller, and S. Diehl, Revealing measurement-induced phase transitions by pre-selection (2022), arXiv:2208.10506 [cond-mat.dis-nn] .
- L. Dubins, On extreme points of convex sets, Journal of Mathematical Analysis and Applications 5, 237 (1962).
- M. Tomamichel, M. Berta, and M. Hayashi, Relating different quantum generalizations of the conditional Rényi entropy, Journal of Mathematical Physics 55, 082206 (2014).
- C. W. Helstrom, Quantum detection and estimation theory, Journal of Statistical Physics 1, 231 (1969).
- T. Ogawa and M. Hayashi, On error exponents in quantum hypothesis testing, IEEE Transactions on Information Theory 50, 1368 (2004).
- S. Mase, Approximations to the birthday problem with unequal occurrence probabilities and their application to the surname problem in japan, Annals of the Institute of Statistical Mathematics 44, 479 (1992).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.