Papers
Topics
Authors
Recent
2000 character limit reached

Nonlinear Methods for Shape Optimization Problems in Liquid Crystal Tactoids

Published 6 Oct 2023 in math.NA and cs.NA | (2310.04022v3)

Abstract: Anisotropic fluids, such as nematic liquid crystals, can form non-spherical equilibrium shapes known as tactoids. Predicting the shape of these structures as a function of material parameters is challenging and paradigmatic of a broader class of problems that combine shape and order. Here, we consider a discrete shape optimization approach with finite elements to find the configuration of two-dimensional and three-dimensional tactoids using the Landau--de Gennes framework and a Q-tensor representation. Efficient solution of the resulting constrained energy minimization problem is achieved using a quasi-Newton and nested iteration algorithm. Numerical validation is performed with benchmark solutions and compared against experimental data and earlier work. We explore physically motivated subproblems, whereby the shape and order are separately held fixed, respectively, to explore the role of both and examine material parameter dependence of the convergence. Nested iteration significantly improves both the computational cost and convergence of numerical solutions of these highly deformable materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. doi:https://doi.org/10.1103/PhysRevE.68.021701.
  2. doi:https://doi.org/10.1080/15421406608083061.
  3. doi:https://doi.org/10.1039/C7CP07026H.
  4. doi:https://doi.org/10.1016/j.cap.2012.03.019.
  5. doi:https://doi.org/10.1039/C7CS00029D.
  6. doi:10.3390/ph16060821.
  7. doi:https://doi.org/10.1063/5.0115418.
  8. doi:10.1038/nature19100.
  9. doi:https://doi.org/10.1038/s42256-020-00263-1.
  10. doi:https://doi.org/10.1103/PhysRevResearch.3.043061.
  11. doi:https://doi.org/10.1039/B917180K.
  12. doi:https://doi.org/10.1016/S0009-2614(02)01824-9.
  13. doi:10.1073/pnas.1115684109.
  14. doi:https://doi.org/10.1039/D1SM00629K.
  15. doi:https://doi.org/10.1063/1.5141997.
  16. doi:10.1146/annurev.matsci.32.112001.132041.
  17. doi:https://doi.org/10.1080/14786430601110364.
  18. doi:https://doi.org/10.1016/j.jcp.2017.10.006.
  19. doi:https://doi.org/10.1098/rspa.2020.0313.
  20. doi:https://doi.org/10.1016/j.jcp.2021.110441.
  21. doi:https://doi.org/10.1080/02678292.2016.1209699.
  22. doi:https://doi.org/10.1137/140956567.
  23. doi:https://doi.org/10.1093/imamat/12.3.223.
  24. doi:10.1007/s006070070028.
  25. doi:https://doi.org/10.1137/141001846.
  26. doi:https://doi.org/10.1137/140984798.
  27. doi:https://doi.org/10.1137/16M1058728.
  28. doi:https://doi.org/10.1080/02678292.2017.1365385.
  29. doi:10.1103/PhysRevLett.126.177801.
  30. doi:https://doi.org/10.1137/120870219.
  31. doi:https://doi.org/10.1137/15M103844X.
  32. doi:https://doi.org/10.1016/j.jcpx.2020.100065.
  33. doi:https://doi.org/10.48550/arXiv.2110.06479.
  34. doi:https://doi.org/10.1039/DF9582500019.
  35. doi:https://doi.org/10.1016/j.jcp.2019.03.006.
  36. doi:https://doi.org/10.48550/arXiv.2207.12916.
  37. doi:doi:10.4208/cicp.OA-2017-0166.
  38. doi:https://doi.org/10.1007/s00211-020-01133-z.
  39. doi:https://doi.org/10.48550/arXiv.2307.11229.
  40. doi:https://doi.org/10.1017/S0962492904000212.
  41. doi:https://doi.org/10.48550/arXiv.2208.07859.
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.