Papers
Topics
Authors
Recent
2000 character limit reached

The Geometric Structure of Fully-Connected ReLU Layers

Published 5 Oct 2023 in cs.LG | (2310.03482v2)

Abstract: We formalize and interpret the geometric structure of $d$-dimensional fully connected ReLU layers in neural networks. The parameters of a ReLU layer induce a natural partition of the input domain, such that the ReLU layer can be significantly simplified in each sector of the partition. This leads to a geometric interpretation of a ReLU layer as a projection onto a polyhedral cone followed by an affine transformation, in line with the description in [doi:10.48550/arXiv.1905.08922] for convolutional networks with ReLU activations. Further, this structure facilitates simplified expressions for preimages of the intersection between partition sectors and hyperplanes, which is useful when describing decision boundaries in a classification setting. We investigate this in detail for a feed-forward network with one hidden ReLU-layer, where we provide results on the geometric complexity of the decision boundary generated by such networks, as well as proving that modulo an affine transformation, such a network can only generate $d$ different decision boundaries. Finally, the effect of adding more layers to the network is discussed.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.