Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Geometric Structure of Fully-Connected ReLU Layers (2310.03482v2)

Published 5 Oct 2023 in cs.LG

Abstract: We formalize and interpret the geometric structure of $d$-dimensional fully connected ReLU layers in neural networks. The parameters of a ReLU layer induce a natural partition of the input domain, such that the ReLU layer can be significantly simplified in each sector of the partition. This leads to a geometric interpretation of a ReLU layer as a projection onto a polyhedral cone followed by an affine transformation, in line with the description in [doi:10.48550/arXiv.1905.08922] for convolutional networks with ReLU activations. Further, this structure facilitates simplified expressions for preimages of the intersection between partition sectors and hyperplanes, which is useful when describing decision boundaries in a classification setting. We investigate this in detail for a feed-forward network with one hidden ReLU-layer, where we provide results on the geometric complexity of the decision boundary generated by such networks, as well as proving that modulo an affine transformation, such a network can only generate $d$ different decision boundaries. Finally, the effect of adding more layers to the network is discussed.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.