Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 415 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Estimation and inference for causal spillover effects in egocentric-network randomized trials in the presence of network membership misclassification (2310.02151v1)

Published 3 Oct 2023 in stat.ME and stat.AP

Abstract: To leverage peer influence and increase population behavioral changes, behavioral interventions often rely on peer-based strategies. A common study design that assesses such strategies is the egocentric-network randomized trial (ENRT), in which those receiving the intervention are encouraged to disseminate information to their peers. The Average Spillover Effect (ASpE) measures the impact of the intervention on participants who do not receive it, but whose outcomes may be affected by others who do. The assessment of the ASpE relies on assumptions about, and correct measurement of, interference sets within which individuals may influence one another's outcomes. It can be challenging to properly specify interference sets, such as networks in ENRTs, and when mismeasured, intervention effects estimated by existing methods will be biased. In HIV prevention studies where social networks play an important role in disease transmission, correcting ASpE estimates for bias due to network misclassification is critical for accurately evaluating the full impact of interventions. We combined measurement error and causal inference methods to bias-correct the ASpE estimate for network misclassification in ENRTs, when surrogate networks are recorded in place of true ones, and validation data that relate the misclassified to the true networks are available. We investigated finite sample properties of our methods in an extensive simulation study, and illustrated our methods in the HIV Prevention Trials Network (HPTN) 037 study.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube