Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Complex crystallographic reflection groups and Seiberg-Witten integrable systems: rank 1 case (2309.12760v2)

Published 22 Sep 2023 in hep-th, math-ph, math.MP, math.RT, and nlin.SI

Abstract: We consider generalisations of the elliptic Calogero--Moser systems associated to complex crystallographic groups in accordance to [1]. In our previous work [2], we proposed these systems as candidates for Seiberg--Witten integrable systems of certain SCFTs. Here we examine that proposal for complex crystallographic groups of rank one. Geometrically, this means considering elliptic curves $T2$ with $\mathbb{Z}m$-symmetries, $m=2,3,4,6$, and Poisson deformations of the orbifolds $(T2\times\mathbb{C})/\mathbb{Z}_m$. The $m=2$ case was studied in [2], while $m=3,4,6$ correspond to Seiberg--Witten integrable systems for the rank 1 Minahan--Nemeshansky SCFTs of type $E{6,7,8}$. This allows us to describe the corresponding elliptic fibrations and the Seiberg--Witten differential in a compact elegant form. This approach also produces quantum spectral curves for these SCFTs, which are given by Fuchsian ODEs with special properties.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 14 likes.

Upgrade to Pro to view all of the tweets about this paper: