Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relaxed Conditions for Parameterized Linear Matrix Inequality in the Form of Nested Fuzzy Summations (2309.11988v2)

Published 21 Sep 2023 in math.OC, cs.SY, and eess.SY

Abstract: The aim of this study is to investigate less conservative conditions for parameterized linear matrix inequalities (PLMIs) that are formulated as nested fuzzy summations. Such PLMIs are commonly encountered in stability analysis and control design problems for Takagi-Sugeno (T-S) fuzzy systems. Utilizing the weighted inequality of arithmetic and geometric means (AM-GM inequality), we develop new, less conservative linear matrix inequalities for the PLMIs. This methodology enables us to efficiently handle the product of membership functions that have intersecting indices. Through empirical case studies, we demonstrate that our proposed conditions produce less conservative results compared to existing approaches in the literature.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. F. Li, W. X. Zheng, and S. Xu, “Finite-time fuzzy control for nonlinear singularly perturbed systems with input constraints,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 6, pp. 2129–2134, 2021.
  2. D. W. Kim, H. J. Lee, and M. Tomizuka, “Fuzzy stabilization of nonlinear systems under sampled-data feedback: an exact discrete-time model approach,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 2, pp. 251–260, 2010.
  3. A.-T. Nguyen, T. Taniguchi, L. Eciolaza, V. Campos, R. Palhares, and M. Sugeno, “Fuzzy control systems: Past, present and future,” IEEE Computational Intelligence Magazine, vol. 14, no. 1, pp. 56–68, 2019.
  4. X. Xie, C. Wei, Z. Gu, and K. Shi, “Relaxed resilient fuzzy stabilization of discrete-time Takagi–Sugeno systems via a higher order time-variant balanced matrix method,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 11, pp. 5044–5050, 2022.
  5. X. Xie, F. Yang, L. Wan, J. Xia, and K. Shi, “Enhanced local stabilization of constrained N-TS fuzzy systems with lighter computational burden,” IEEE Transactions on Fuzzy Systems, vol. 31, no. 3, pp. 1064–1070, 2022.
  6. Y. Wang, L. Zheng, H. Zhang, and W. X. Zheng, “Fuzzy observer-based repetitive tracking control for nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 10, pp. 2401–2415, 2019.
  7. Y. Ren, D.-W. Ding, Q. Li, and X. Xie, “Static output feedback control for T–S fuzzy systems via a successive convex optimization algorithm,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 10, pp. 4298–4309, 2022.
  8. Y. H. Jang, K. Lee, and H. S. Kim, “An intelligent digital redesign approach to the sampled-data fuzzy observer design,” IEEE Transactions on Fuzzy Systems, vol. 31, no. 1, pp. 92–103, 2022.
  9. H. Lu, X. Xie, and C. Peng, “Relaxed conditions of observer design of discrete-time Takagi–Sugeno fuzzy systems via a new multi-instant gain-scheduling scheme,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 7, pp. 2759–2768, 2021.
  10. H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “Parameterized linear matrix inequality techniques in fuzzy control system design,” IEEE Transactions on fuzzy systems, vol. 9, no. 2, pp. 324–332, 2001.
  11. E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Transactions on Fuzzy systems, vol. 8, no. 5, pp. 523–534, 2000.
  12. M. C. Teixeira, E. Assunção, and R. G. Avellar, “On relaxed LMI-based designs for fuzzy regulators and fuzzy observers,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 5, pp. 613–623, 2003.
  13. C.-H. Fang, Y.-S. Liu, S.-W. Kau, L. Hong, and C.-H. Lee, “A new LMI-based approach to relaxed quadratic stabilization of TS fuzzy control systems,” IEEE Transactions on fuzzy systems, vol. 14, no. 3, pp. 386–397, 2006.
  14. J.-T. Pan, T. M. Guerra, S.-M. Fei, and A. Jaadari, “Nonquadratic stabilization of continuous T–S fuzzy models: LMI solution for a local approach,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 3, pp. 594–602, 2011.
  15. S. H. Kim, “Improvement of slack variable-free relaxation method and its application to control design of TS fuzzy systems,” IEEE Access, vol. 10, pp. 71 830–71 836, 2022.
  16. A. Sala and C. Ariño, “Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem,” Fuzzy sets and systems, vol. 158, no. 24, pp. 2671–2686, 2007.
  17. R. C. Oliveira and P. L. Peres, “Parameter-dependent LMIs in robust analysis: Characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations,” IEEE Transactions on Automatic Control, vol. 52, no. 7, pp. 1334–1340, 2007.
  18. D. W. Kim and D. Lee, “Relaxed conditions for parameterized linear matrix inequality in the form of double fuzzy summation,” IEEE Transactions on Fuzzy Systems, 2023 (accpeted), DOI: 10.1109/TFUZZ.2023.3315290.
  19. A.-T. Nguyen, P. Chevrel, and F. Claveau, “Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations,” Automatica, vol. 89, pp. 420–424, 2018.
  20. T.-M. Guerra, A. Kruszewski, L. Vermeiren, and H. Tirmant, “Conditions of output stabilization for nonlinear models in the Takagi–Sugeno’s form,” Fuzzy Sets and Systems, vol. 157, no. 9, pp. 1248–1259, 2006.
  21. Q.-M. Luo and H. Srivastava, “Some generalizations of the Apostol–Genocchi polynomials and the stirling numbers of the second kind,” Applied Mathematics and Computation, vol. 217, no. 12, pp. 5702–5728, 2011.
Citations (1)

Summary

We haven't generated a summary for this paper yet.