Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Harnessing Membership Function Dynamics for Stability Analysis of T-S Fuzzy Systems (2401.02216v2)

Published 4 Jan 2024 in eess.SY, cs.SY, and math.OC

Abstract: The main goal of this paper is to develop a new linear matrix inequality (LMI) condition for the asymptotic stability of continuous-time Takagi-Sugeno (T-S) fuzzy systems. A key advantage of this new condition is its independence from the bounds on the time-derivatives of the membership functions, a requirement present in the existing approaches. This is achieved by introducing a novel fuzzy Lyapunov function that incorporates an augmented state vector. Notably, this augmented state vector encompasses the membership functions, allowing the dynamics of these functions to be integrated into the proposed condition. This inclusion of additional information about the membership function serves to reduce the conservativeness of the suggested stability condition. To demonstrate the effectiveness of the proposed method, examples are provided.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. A.-T. Nguyen, T. Taniguchi, L. Eciolaza, V. Campos, R. Palhares, and M. Sugeno, “Fuzzy control systems: Past, present and future,” IEEE Computational Intelligence Magazine, vol. 14, no. 1, pp. 56–68, 2019.
  2. X. Xie, C. Wei, Z. Gu, and K. Shi, “Relaxed resilient fuzzy stabilization of discrete-time Takagi–Sugeno systems via a higher order time-variant balanced matrix method,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 11, pp. 5044–5050, 2022.
  3. X. Xie, F. Yang, L. Wan, J. Xia, and K. Shi, “Enhanced local stabilization of constrained N-TS fuzzy systems with lighter computational burden,” IEEE Transactions on Fuzzy Systems, vol. 31, no. 3, pp. 1064–1070, 2022.
  4. C.-H. Fang, Y.-S. Liu, S.-W. Kau, L. Hong, and C.-H. Lee, “A new LMI-based approach to relaxed quadratic stabilization of TS fuzzy control systems,” IEEE Transactions on fuzzy systems, vol. 14, no. 3, pp. 386–397, 2006.
  5. E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Transactions on Fuzzy systems, vol. 8, no. 5, pp. 523–534, 2000.
  6. S. H. Kim, “Improvement of slack variable-free relaxation method and its application to control design of TS fuzzy systems,” IEEE Access, vol. 10, pp. 71 830–71 836, 2022.
  7. H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “Parameterized linear matrix inequality techniques in fuzzy control system design,” IEEE Transactions on fuzzy systems, vol. 9, no. 2, pp. 324–332, 2001.
  8. D. W. Kim and D. Lee, “Relaxed conditions for parameterized linear matrix inequality in the form of nested fuzzy summations,” IEEE Transactions on Fuzzy Systems, 2023.
  9. A. Sala and C. Ariño, “Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem,” Fuzzy sets and systems, vol. 158, no. 24, pp. 2671–2686, 2007.
  10. R. C. Oliveira and P. L. Peres, “Parameter-dependent LMIs in robust analysis: Characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations,” IEEE Transactions on Automatic Control, vol. 52, no. 7, pp. 1334–1340, 2007.
  11. A. Sala and C. Arino, “Relaxed stability and performance conditions for Takagi–Sugeno fuzzy systems with knowledge on membership function overlap,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 3, pp. 727–732, 2007.
  12. M. Narimani and H.-K. Lam, “Relaxed LMI-based stability conditions for Takagi–Sugeno fuzzy control systems using regional-membership-function-shape-dependent analysis approach,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 5, pp. 1221–1228, 2009.
  13. A. Kruszewski, A. Sala, T. M. Guerra, and C. Arino, “A triangulation approach to asymptotically exact conditions for fuzzy summations,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 5, pp. 985–994, 2009.
  14. H.-K. Lam and M. Narimani, “Quadratic-stability analysis of fuzzy-model-based control systems using staircase membership functions,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 1, pp. 125–137, 2009.
  15. M. Johansson, A. Rantzer, and K.-E. Arzen, “Piecewise quadratic stability of fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 6, pp. 713–722, 1999.
  16. G. Feng, “Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 5, pp. 605–612, 2003.
  17. V. C. Campos, F. O. Souza, L. A. Tôrres, and R. M. Palhares, “New stability conditions based on piecewise fuzzy Lyapunov functions and tensor product transformations,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 4, pp. 748–760, 2012.
  18. K. Tanaka, T. Hori, and H. O. Wang, “A multiple Lyapunov function approach to stabilization of fuzzy control systems,” IEEE Transactions on fuzzy systems, vol. 11, no. 4, pp. 582–589, 2003.
  19. L. A. Mozelli, R. M. Palhares, F. Souza, and E. M. Mendes, “Reducing conservativeness in recent stability conditions of TS fuzzy systems,” Automatica, vol. 45, no. 6, pp. 1580–1583, 2009.
  20. T. M. Guerra and L. Vermeiren, “Lmi-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form,” Automatica, vol. 40, no. 5, pp. 823–829, 2004.
  21. B. Ding, H. Sun, and P. Yang, “Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi–Sugeno’s form,” Automatica, vol. 42, no. 3, pp. 503–508, 2006.
  22. D. H. Lee, J. B. Park, and Y. H. Joo, “Improvement on nonquadratic stabilization of discrete-time Takagi–Sugeno fuzzy systems: Multiple-parameterization approach,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 2, pp. 425–429, 2010.
  23. ——, “A new fuzzy Lyapunov function for relaxed stability condition of continuous-time Takagi–Sugeno fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 4, pp. 785–791, 2011.
  24. D. H. Lee and Y. H. Joo, “On the generalized local stability and local stabilization conditions for discrete-time Takagi–Sugeno fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 6, pp. 1654–1668, 2014.
  25. D. H. Lee et al., “Relaxed LMI conditions for local stability and local stabilization of continuous-time Takagi–Sugeno fuzzy systems,” IEEE Transactions on Cybernetics, vol. 44, no. 3, pp. 394–405, 2013.
  26. B. Ding, “Homogeneous polynomially nonquadratic stabilization of discrete-time Takagi–Sugeno systems via nonparallel distributed compensation law,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 994–1000, 2010.
  27. A. Z. Lazarini, M. C. Teixeira, M. D. S. Jean, E. Assunção, R. Cardim, and A. S. Buzetti, “Relaxed stabilization conditions for TS fuzzy systems with optimal upper bounds for the time derivative of fuzzy Lyapunov functions,” IEEE Access, vol. 9, pp. 64 945–64 957, 2021.
  28. B.-J. Rhee and S. Won, “A new fuzzy Lyapunov function approach for a Takagi–Sugeno fuzzy control system design,” Fuzzy sets and systems, vol. 157, no. 9, pp. 1211–1228, 2006.
  29. T. González, A. Sala, and M. Bernal, “A generalised integral polynomial Lyapunov function for nonlinear systems,” Fuzzy Sets and Systems, vol. 356, pp. 77–91, 2019.
  30. K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,” IEEE Transactions on Fuzzy systems, vol. 17, no. 4, pp. 911–922, 2008.
  31. A. Sala and C. Arino, “Polynomial fuzzy models for nonlinear control: A Taylor series approach,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 6, pp. 1284–1295, 2009.
  32. H.-K. Lam, “Polynomial fuzzy-model-based control systems: Stability analysis via piecewise-linear membership functions,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 588–593, 2011.
  33. M. Bernal, A. Sala, A. Jaadari, and T.-M. Guerra, “Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions,” Fuzzy Sets and Systems, vol. 185, no. 1, pp. 5–14, 2011.
  34. A. Kruszewski, R. Wang, and T.-M. Guerra, “Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: A new approach,” IEEE Transactions on Automatic Control, vol. 53, no. 2, pp. 606–611, 2008.
  35. D. H. Lee, J. B. Park, and Y. H. Joo, “Approaches to extended non-quadratic stability and stabilization conditions for discrete-time Takagi–Sugeno fuzzy systems,” Automatica, vol. 47, no. 3, pp. 534–538, 2011.
  36. ——, “Further theoretical justification of the k𝑘kitalic_k-samples variation approach for discrete-time Takagi–Sugeno fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 594–597, 2010.
  37. ——, “Further improvement of periodic control approach for relaxed stabilization condition of discrete-time Takagi–Sugeno fuzzy systems,” Fuzzy Sets and Systems, vol. 174, no. 1, pp. 50–65, 2011.
  38. M. Bernal and T. M. Guerra, “Generalized nonquadratic stability of continuous-time Takagi–Sugeno models,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 4, pp. 815–822, 2010.
  39. J.-T. Pan, T. M. Guerra, S.-M. Fei, and A. Jaadari, “Nonquadratic stabilization of continuous T–S fuzzy models: LMI solution for a local approach,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 3, pp. 594–602, 2011.
  40. D. H. Lee, J. B. Park, and Y. H. Joo, “A fuzzy Lyapunov function approach to estimating the domain of attraction for continuous-time Takagi–Sugeno fuzzy systems,” Information Sciences, vol. 185, no. 1, pp. 230–248, 2012.
  41. D. H. Lee, Y. H. Joo, and M. H. Tak, “Linear matrix inequality approach to local stability analysis of discrete-time Takagi–Sugeno fuzzy systems,” IET Control Theory & Applications, vol. 7, no. 9, pp. 1309–1318, 2013.
  42. D. Lee and J. Hu, “Local model predictive control for T–S fuzzy systems,” IEEE Transactions on Cybernetics, vol. 47, no. 9, pp. 2556–2567, 2016.
  43. D. H. Lee, Y. H. Joo, and M. H. Tak, “Local stability analysis of continuous-time Takagi–Sugeno fuzzy systems: A fuzzy Lyapunov function approach,” Information Sciences, vol. 257, pp. 163–175, 2014.
  44. H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” IEEE transactions on fuzzy systems, vol. 4, no. 1, pp. 14–23, 1996.
  45. K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Transactions on fuzzy systems, vol. 6, no. 2, pp. 250–265, 1998.
  46. M. C. Teixeira, E. Assunção, and R. G. Avellar, “On relaxed LMI-based designs for fuzzy regulators and fuzzy observers,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 5, pp. 613–623, 2003.
  47. J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11-12, pp. 625–653, 1999.
  48. J. Löfberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in Proceedings of IEEE International Symposium on Computer Aided Control Systems Design, Taipei, 2004, pp. 284–289, [Online]. Available: http://control.ee.ethz.ch/ joloef/yalmip.php.

Summary

We haven't generated a summary for this paper yet.