Papers
Topics
Authors
Recent
2000 character limit reached

Resource Allocation for Semantic-Aware Mobile Edge Computing Systems

Published 21 Sep 2023 in eess.SP | (2309.11736v1)

Abstract: In this paper, a semantic-aware joint communication and computation resource allocation framework is proposed for mobile edge computing (MEC) systems. In the considered system, each terminal device (TD) has a computation task, which needs to be executed by offloading to the MEC server. To further decrease the transmission burden, each TD sends the small-size extracted semantic information of tasks to the server instead of the large-size raw data. An optimization problem of joint semantic-aware division factor, communication and computation resource management is formulated. The problem aims to minimize the maximum execution delay of all TDs while satisfying energy consumption constraints. The original non-convex problem is transformed into a convex one based on the geometric programming and the optimal solution is obtained by the alternating optimization algorithm. Moreover, the closed-form optimal solution of the semantic extraction factor is derived. Simulation results show that the proposed algorithm yields up to 37.10% delay reduction compared with the benchmark algorithm without semantic-aware allocation. Furthermore, small semantic extraction factors are preferred in the case of large task sizes and poor channel conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration,” IEEE Commun. Surv. Tutor., vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.
  2. Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J. Hwang, and Z. Ding, “A Survey of Multi-Access Edge Computing in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art,” IEEE Access, vol. 8, pp. 116 974–117 017, June 2020.
  3. X. Hu, K.-K. Wong, and K. Yang, “Wireless Powered Cooperation-Assisted Mobile Edge Computing,” IEEE Trans. Wirel. Commun., vol. 17, no. 4, pp. 2375–2388, Apr. 2018.
  4. Y. Yu, Y. Yan, S. Li, Z. Li, and D. Wu, “Task Delay Minimization in Wireless Powered Mobile Edge Computing Networks: A Deep Reinforcement Learning Approach,” in Proc. International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, Oct. 2021, pp. 1–6.
  5. Z. Zhu, J. Peng, X. Gu, H. Li, K. Liu, Z. Zhou, and W. Liu, “Fair Resource Allocation for System Throughput Maximization in Mobile Edge Computing,” IEEE Access, vol. 6, pp. 5332–5340, Jan. 2018.
  6. F. Zhou and R. Q. Hu, “Computation Efficiency Maximization in Wireless-Powered Mobile Edge Computing Networks,” IEEE Trans. Wirel. Commun., vol. 19, no. 5, pp. 3170–3184, Feb. 2020.
  7. Y. Cang, M. Chen, J. Zhao, T. Gong, J. Zhao, and Z. Yang, “Fair Computation Efficiency for OFDMA-Based Multiaccess Edge Computing Systems,” IEEE Commun. Lett., vol. 27, no. 3, pp. 916–920, Mar. 2023.
  8. K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan, and Y. Zhang, “Energy-Efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks,” IEEE Access, vol. 4, pp. 5896–5907, Aug. 2016.
  9. G. Shi, Y. Xiao, Y. Li, and X. Xie, “From Semantic Communication to Semantic-Aware Networking: Model, Architecture, and Open Problems,” IEEE Commun. Mag., vol. 59, no. 8, pp. 44–50, Aug. 2021.
  10. W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah, “Edge Learning for B5G Networks With Distributed Signal Processing: Semantic Communication, Edge Computing, and Wireless Sensing,” IEEE J. Sel. Topics Sig. Proces., vol. 17, no. 1, pp. 9–39, Jan. 2023.
  11. R. Carnap, Y. Bar-Hillel et al., “An outline of a theory of semantic information,” 1952.
  12. J. Bao, P. Basu, M. Dean, C. Partridge, A. Swami, W. Leland, and J. A. Hendler, “Towards a theory of semantic communication,” in Proc. IEEE Network Science Workshop, West Point, NY, USA, June 2011, pp. 110–117.
  13. H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep Learning Enabled Semantic Communication Systems,” IEEE Trans. Signal Process., vol. 69, pp. 2663–2675, Apr. 2021.
  14. E. Bourtsoulatze, D. Burth Kurka, and D. Gündüz, “Deep Joint Source-Channel Coding for Wireless Image Transmission,” IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 3, pp. 567–579, May 2019.
  15. Z. Weng and Z. Qin, “Semantic Communication Systems for Speech Transmission,” IEEE J. Sel. Areas Commun., vol. 39, no. 8, pp. 2434–2444, Aug. 2021.
  16. L. Cao and S. Lin, “Target Detection Algorithm of Optimized Convolutional Neural Network under Computer Vision,” in Proc. International Conference on Unmanned Systems (ICUS), Harbin, China, Nov. 2020, pp. 923–930.
  17. S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A Survey on Knowledge Graphs: Representation, Acquisition, and Applications,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 2, pp. 494–514, Feb. 2022.
  18. Z. Yang, M. Chen, Z. Zhang, and C. Huang, “Energy Efficient Semantic Communication Over Wireless Networks With Rate Splitting,” IEEE J. Sel. Areas Commun., vol. 41, no. 5, pp. 1484–1495, May 2023.
  19. S. Bi, L. Huang, H. Wang, and Y.-J. A. Zhang, “Lyapunov-Guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks,” IEEE Trans. Wirel. Commun., vol. 20, no. 11, pp. 7519–7537, Nov. 2021.
Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.