Papers
Topics
Authors
Recent
2000 character limit reached

Mean-Field Limit of Point Vortices for the Lake Equations (2309.10453v1)

Published 19 Sep 2023 in math.AP

Abstract: In this paper we study the mean-field limit of a system of point vortices for the lake equations. These equations model the evolution of the horizontal component of the velocity field of a fluid in a lake of non-constant depth, when its vertical component can be neglected. As for the axisymmetric Euler equations there are non-trivial self interactions of the vortices consisting in the leading order of a transport term along the level sets of the depth function. If the self-interactions are negligible, we show that the system of point vortices converges to the lake equations as the number of points becomes very large. If the self-interactions are of order one, we show that it converges to a forced lake equations and if the self-interactions are predominant, then up to time rescaling we show that it converges to a transport equation.The proof is based on a modulated energy approach introduced by Duerinckx and Serfaty in (Duke Math. J., 2020) that we adapt to deal with the heterogeneity of the lake kernel.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.