Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pedestrian Trajectory Prediction Using Dynamics-based Deep Learning (2309.09021v2)

Published 16 Sep 2023 in cs.RO

Abstract: Pedestrian trajectory prediction plays an important role in autonomous driving systems and robotics. Recent work utilizing prominent deep learning models for pedestrian motion prediction makes limited a priori assumptions about human movements, resulting in a lack of explainability and explicit constraints enforced on predicted trajectories. We present a dynamics-based deep learning framework with a novel asymptotically stable dynamical system integrated into a Transformer-based model. We use an asymptotically stable dynamical system to model human goal-targeted motion by enforcing the human walking trajectory, which converges to a predicted goal position, and to provide the Transformer model with prior knowledge and explainability. Our framework features the Transformer model that works with a goal estimator and dynamical system to learn features from pedestrian motion history. The results show that our framework outperforms prominent models using five benchmark human motion datasets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras, “Human motion trajectory prediction: A survey,” The International Journal of Robotics Research, vol. 39, no. 8, pp. 895–935, 2020.
  2. F. Leon and M. Gavrilescu, “A review of tracking and trajectory prediction methods for autonomous driving,” Mathematics, vol. 9, no. 6, p. 660, 2021.
  3. Y. Huang, J. Du, Z. Yang, Z. Zhou, L. Zhang, and H. Chen, “A survey on trajectory-prediction methods for autonomous driving,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 652–674, 2022.
  4. W. Zhi, T. Lai, L. Ott, and F. Ramos, “Anticipatory navigation in crowds by probabilistic prediction of pedestrian future movements,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 8459–8464.
  5. D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.
  6. R. Schubert, E. Richter, and G. Wanielik, “Comparison and evaluation of advanced motion models for vehicle tracking,” in 2008 11th international conference on information fusion.   IEEE, 2008, pp. 1–6.
  7. B. I. Sighencea, R. I. Stanciu, and C. D. Căleanu, “A review of deep learning-based methods for pedestrian trajectory prediction,” Sensors, vol. 21, no. 22, p. 7543, 2021.
  8. J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks, vol. 61, pp. 85–117, 2015.
  9. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  10. W. Zhi, L. Ott, and F. Ramos, “Probabilistic trajectory prediction with structural constraints,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 9849–9856.
  11. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  12. A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social lstm: Human trajectory prediction in crowded spaces,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 961–971.
  13. H. Xue, D. Q. Huynh, and M. Reynolds, “Ss-lstm: A hierarchical lstm model for pedestrian trajectory prediction,” in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).   IEEE, 2018, pp. 1186–1194.
  14. A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling attention in human crowds,” in 2018 IEEE international Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 4601–4607.
  15. H. Cheng, W. Liao, M. Y. Yang, B. Rosenhahn, and M. Sester, “Amenet: Attentive maps encoder network for trajectory prediction,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 172, pp. 253–266, 2021.
  16. C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-temporal graph transformer networks for pedestrian trajectory prediction,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XII 16.   Springer, 2020, pp. 507–523.
  17. F. Giuliari, I. Hasan, M. Cristani, and F. Galasso, “Transformer networks for trajectory forecasting,” in 2020 25th international conference on pattern recognition (ICPR).   IEEE, 2021, pp. 10 335–10 342.
  18. L. Zhou, D. Yang, X. Zhai, S. Wu, Z. Hu, and J. Liu, “Ga-stt: Human trajectory prediction with group aware spatial-temporal transformer,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7660–7667, 2022.
  19. H. Zhao and R. P. Wildes, “Where are you heading? dynamic trajectory prediction with expert goal examples,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 7629–7638.
  20. A. Rasouli, I. Kotseruba, T. Kunic, and J. K. Tsotsos, “Pie: A large-scale dataset and models for pedestrian intention estimation and trajectory prediction,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6262–6271.
  21. N. Rhinehart, R. McAllister, K. Kitani, and S. Levine, “Precog: Prediction conditioned on goals in visual multi-agent settings,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2821–2830.
  22. P. Dendorfer, A. Osep, and L. Leal-Taixé, “Goal-gan: Multimodal trajectory prediction based on goal position estimation,” in Proceedings of the Asian Conference on Computer Vision, 2020.
  23. K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik, and A. Gaidon, “It is not the journey but the destination: Endpoint conditioned trajectory prediction,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16.   Springer, 2020, pp. 759–776.
  24. X. Tan, R. Liu, S. Zhang, J. Li, and P. Ma, “Review of pedestrian trajectory prediction methods,” Frontiers in Computing and Intelligent Systems, vol. 1, no. 3, pp. 68–77, 2022.
  25. R. Korbmacher and A. Tordeux, “Review of pedestrian trajectory prediction methods: Comparing deep learning and knowledge-based approaches,” IEEE Transactions on Intelligent Transportation Systems, 2022.
  26. F. Pasquale, “Toward a fourth law of robotics: Preserving attribution, responsibility, and explainability in an algorithmic society,” Ohio St. LJ, vol. 78, p. 1243, 2017.
  27. K. Beckh, S. Müller, M. Jakobs, V. Toborek, H. Tan, R. Fischer, P. Welke, S. Houben, and L. von Rueden, “Harnessing prior knowledge for explainable machine learning: An overview,” in 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML).   IEEE, 2023, pp. 450–463.
  28. A. M. Lyapunov, “The general problem of the stability of motion,” International journal of control, vol. 55, no. 3, pp. 531–534, 1992.
  29. T. Flash and N. Hogan, “The coordination of arm movements: an experimentally confirmed mathematical model,” Journal of neuroscience, vol. 5, no. 7, pp. 1688–1703, 1985.
  30. W. Zhi, T. Lai, L. Ott, and F. Ramos, “Diffeomorphic transforms for generalised imitation learning.” in L4DC, 2022, pp. 508–519.
  31. M. Cuturi and M. Blondel, “Soft-dtw: a differentiable loss function for time-series,” in International conference on machine learning.   PMLR, 2017, pp. 894–903.
  32. H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken word recognition,” IEEE transactions on acoustics, speech, and signal processing, vol. 26, no. 1, pp. 43–49, 1978.
  33. P. Kothari, S. Kreiss, and A. Alahi, “Human trajectory forecasting in crowds: A deep learning perspective,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 7386–7400, 2021.
  34. J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algorithm,” Journal of the royal statistical society. series c (applied statistics), vol. 28, no. 1, pp. 100–108, 1979.
  35. M. A. Rana, A. Li, D. Fox, B. Boots, F. Ramos, and N. Ratliff, “Euclideanizing flows: Diffeomorphic reduction for learning stable dynamical systems,” in Learning for Dynamics and Control.   PMLR, 2020, pp. 630–639.
  36. A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially acceptable trajectories with generative adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2255–2264.
  37. S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk alone: Modeling social behavior for multi-target tracking,” in 2009 IEEE 12th international conference on computer vision.   IEEE, 2009, pp. 261–268.
  38. A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,” in Computer graphics forum, vol. 26, no. 3.   Wiley Online Library, 2007, pp. 655–664.
  39. A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory prediction,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 14 424–14 432.
  40. C. Schöller, V. Aravantinos, F. Lay, and A. Knoll, “What the constant velocity model can teach us about pedestrian motion prediction,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1696–1703, 2020.
  41. C. Liu, Y. Chen, M. Liu, and B. E. Shi, “Avgcn: Trajectory prediction using graph convolutional networks guided by human attention,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 14 234–14 240.
  42. A. Mohamed, D. Zhu, W. Vu, M. Elhoseiny, and C. Claudel, “Social-implicit: Rethinking trajectory prediction evaluation and the effectiveness of implicit maximum likelihood estimation,” in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXII.   Springer, 2022, pp. 463–479.
  43. K. Lv and L. Yuan, “Skgacn: Social knowledge-guided graph attention convolutional network for human trajectory prediction,” IEEE Transactions on Instrumentation and Measurement, 2023.
  44. T. Maeda and N. Ukita, “Fast inference and update of probabilistic density estimation on trajectory prediction,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 9795–9805.
  45. G. Valentini, E. Ferrante, and M. Dorigo, “The best-of-n problem in robot swarms: Formalization, state of the art, and novel perspectives,” Frontiers in Robotics and AI, vol. 4, p. 9, 2017.

Summary

We haven't generated a summary for this paper yet.