Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Forecasting Pedestrian Trajectory with Machine-Annotated Training Data (1905.03681v1)

Published 9 May 2019 in cs.CV and cs.RO

Abstract: Reliable anticipation of pedestrian trajectory is imperative for the operation of autonomous vehicles and can significantly enhance the functionality of advanced driver assistance systems. While significant progress has been made in the field of pedestrian detection, forecasting pedestrian trajectories remains a challenging problem due to the unpredictable nature of pedestrians and the huge space of potentially useful features. In this work, we present a deep learning approach for pedestrian trajectory forecasting using a single vehicle-mounted camera. Deep learning models that have revolutionized other areas in computer vision have seen limited application to trajectory forecasting, in part due to the lack of richly annotated training data. We address the lack of training data by introducing a scalable machine annotation scheme that enables our model to be trained using a large dataset without human annotation. In addition, we propose Dynamic Trajectory Predictor (DTP), a model for forecasting pedestrian trajectory up to one second into the future. DTP is trained using both human and machine-annotated data, and anticipates dynamic motion that is not captured by linear models. Experimental evaluation confirms the benefits of the proposed model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Olly Styles (6 papers)
  2. Arun Ross (64 papers)
  3. Victor Sanchez (46 papers)
Citations (34)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com