Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

On some isoperimetric inequalities for the Newtonian capacity (2309.08364v2)

Published 15 Sep 2023 in math.AP

Abstract: Upper bounds are obtained for the Newtonian capacity of compact sets in $\Rd,\,d\ge 3$ in terms of the perimeter of the $r$-parallel neighbourhood of $K$. For compact, convex sets in $\Rd,\,d\ge 3$ with a $C2$ boundary the Newtonian capacity is bounded from above by $(d-2)M(K)$, where $M(K)>0$ is the integral of the mean curvature over the boundary of $K$ with equality if $K$ is a ball. For compact, convex sets in $\Rd,\,d\ge 3$ with non-empty interior the Newtonian capacity is bounded from above by $\frac{(d-2)P(K)2}{d|K|}$ with equality if $K$ is a ball. Here $P(K)$ is the perimeter of $K$ and $|K|$ is its measure. A quantitative refinement of the latter inequality in terms of the Fraenkel asymmetry is also obtained. An upper bound is obtained for expected Newtonian capacity of the Wiener sausage in $\Rd,\,d\ge 5$ with radius $\varepsilon$ and time length $t$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube