The linear property of genus-$g$, $n$-point, $b$-boundary, $c$-crosscap correlation functions in two-dimensional conformal field theory (2309.07528v4)
Abstract: We propose a method to challenge the calculation of genus-$g$, bulk $n$-point, $b$-boundary, $c$-crosscap correlation functions with $x$ boundary operators $\mathcal{F}{g,n,b,c}{x}$ in two-dimensional conformal field theories (CFT$_2$). We show that $\mathcal{F}{g,n,b,c}{x}$ are infinite linear combinations of genus-$g$, bulk $(n+b+c)$-point functions $\mathcal{F}_{g,(n+b+c)}$, and try to obtain the linear coefficients in this work. We show the existence of a single pole structure in the linear coefficients at degenerate limits. A practical method to obtain the infinite linear coefficients is the free field realizations of Ishibashi states. We review the results in Virasoro minimal models $\mathcal{M}(p,p')$ and extend it to the $N=1$ minimal models $\mathcal{SM}(p,p')$.
- A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, “Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory,” Nucl. Phys. B 241, 333-380 (1984)
- H. Sonoda, “SEWING CONFORMAL FIELD THEORIES,” Nucl. Phys. B 311, 401-416 (1988)
- H. Sonoda, “SEWING CONFORMAL FIELD THEORIES. 2.,” Nucl. Phys. B 311, 417-432 (1988)
- J. L. Cardy, “Operator Content of Two-Dimensional Conformally Invariant Theories,” Nucl. Phys. B 270, 186-204 (1986)
- D. C. Lewellen, “Sewing constraints for conformal field theories on surfaces with boundaries,” Nucl. Phys. B 372, 654-682 (1992)
- I. Runkel, “Boundary structure constants for the A series Virasoro minimal models,” Nucl. Phys. B 549, 563-578 (1999) [arXiv:hep-th/9811178 [hep-th]].
- D. Fioravanti, G. Pradisi and A. Sagnotti, “Sewing constraints and nonorientable open strings,” Phys. Lett. B 321, 349-354 (1994) [arXiv:hep-th/9311183 [hep-th]].
- L. Alvarez-Gaume, C. Gomez, G. W. Moore and C. Vafa, “Strings in the Operator Formalism,” Nucl. Phys. B 303, 455-521 (1988)
- A. Sen, “Off-shell Amplitudes in Superstring Theory,” Fortsch. Phys. 63, 149-188 (2015) [arXiv:1408.0571 [hep-th]].
- N. Ishibashi, “The Boundary and Crosscap States in Conformal Field Theories,” Mod. Phys. Lett. A 4, 251 (1989)
- T. Onogi and N. Ishibashi, “Conformal Field Theories on Surfaces With Boundaries and Crosscaps,” Mod. Phys. Lett. A 4, 161 (1989) [erratum: Mod. Phys. Lett. A 4, 885 (1989)]
- J. L. Cardy, “Boundary Conditions, Fusion Rules and the Verlinde Formula,” Nucl. Phys. B 324, 581-596 (1989)
- R. E. Behrend, P. A. Pearce, V. B. Petkova and J. B. Zuber, “On the classification of bulk and boundary conformal field theories,” Phys. Lett. B 444, 163-166 (1998) [arXiv:hep-th/9809097 [hep-th]].
- R. E. Behrend, P. A. Pearce, V. B. Petkova and J. B. Zuber, “Boundary conditions in rational conformal field theories,” Nucl. Phys. B 570, 525-589 (2000) [arXiv:hep-th/9908036 [hep-th]].
- G. Pradisi, A. Sagnotti and Y. S. Stanev, “Planar duality in SU(2) WZW models,” Phys. Lett. B 354, 279-286 (1995) [arXiv:hep-th/9503207 [hep-th]].
- G. Pradisi, A. Sagnotti and Y. S. Stanev, “The Open descendants of nondiagonal SU(2) WZW models,” Phys. Lett. B 356, 230-238 (1995) [arXiv:hep-th/9506014 [hep-th]].
- G. W. Moore and N. Seiberg, “Naturality in Conformal Field Theory,” Nucl. Phys. B 313, 16-40 (1989)
- G. W. Moore and N. Seiberg, “Classical and Quantum Conformal Field Theory,” Commun. Math. Phys. 123, 177 (1989)
- C. G. Callan, Jr., C. Lovelace, C. R. Nappi and S. A. Yost, “Adding Holes and Crosscaps to the Superstring,” Nucl. Phys. B 293, 83 (1987)
- G. Felder, “BRST Approach to Minimal Models,” Nucl. Phys. B 317, 215 (1989) [erratum: Nucl. Phys. B 324, 548 (1989)]
- P. Bouwknegt, J. G. McCarthy and K. Pilch, “Free Field Realizations of WZNW Models: BRST Complex and Its Quantum Group Structure,” Phys. Lett. B 234, 297-303 (1990)
- P. Bouwknegt, J. G. McCarthy and K. Pilch, “Quantum Group Structure in the Fock Space Resolutions of Sl(n𝑛nitalic_n) Representations,” Commun. Math. Phys. 131, 125-156 (1990)
- T. Jayaraman, M. A. Namazie, K. S. Narain, C. A. Nunez and M. H. Sarmadi, “Superconformal Minimal Models on the Torus,” Nucl. Phys. B 336, 610-636 (1990)
- P. Bouwknegt, J. G. McCarthy and K. Pilch, “Free field approach to two-dimensional conformal field theories,” Prog. Theor. Phys. Suppl. 102, 67-135 (1990)
- P. Bouwknegt, J. G. McCarthy and K. Pilch, “On the freefield resolutions for coset conformal field theories,” Nucl. Phys. B 352, 139-162 (1991)
- P. Bouwknegt, J. G. McCarthy, D. Nemeschansky and K. Pilch, “Vertex operators and fusion rules in the free field realizations of WZNW models,” Phys. Lett. B 258, 127-133 (1991)
- S. Kawai, “Coulomb gas approach for boundary conformal field theory,” Nucl. Phys. B 630, 203-221 (2002) [arXiv:hep-th/0201146 [hep-th]].
- A. F. Caldeira, S. Kawai and J. F. Wheater, “Free boson formulation of boundary states in W(3) minimal models and the critical Potts model,” JHEP 08, 041 (2003) [arXiv:hep-th/0306082 [hep-th]].
- S. E. Parkhomenko, “Free field approach to D-branes in Gepner models,” Nucl. Phys. B 731, 360-388 (2005) [arXiv:hep-th/0412296 [hep-th]].
- J. L. Cardy, “Conformal Invariance and Surface Critical Behavior,” Nucl. Phys. B 240, 514-532 (1984)
- A. Recknagel and V. Schomerus, “D-branes in Gepner models,” Nucl. Phys. B 531, 185-225 (1998) [arXiv:hep-th/9712186 [hep-th]].
- A. Recknagel and V. Schomerus, “Boundary deformation theory and moduli spaces of D-branes,” Nucl. Phys. B 545, 233-282 (1999) [arXiv:hep-th/9811237 [hep-th]].
- R. E. Behrend, P. A. Pearce and J. B. Zuber, “Integrable boundaries, conformal boundary conditions and A-D-E fusion rules,” J. Phys. A 31, L763-L770 (1998) [arXiv:hep-th/9807142 [hep-th]].
- J. L. Cardy and D. C. Lewellen, “Bulk and boundary operators in conformal field theory,” Phys. Lett. B 259, 274-278 (1991)
- Y. S. Stanev, “Two-dimensional conformal field theory on open and unoriented surfaces,” [arXiv:hep-th/0112222 [hep-th]].
- A. B. Zamolodchikov, “CONFORMAL SYMMETRY IN TWO-DIMENSIONS: AN EXPLICIT RECURRENCE FORMULA FOR THE CONFORMAL PARTIAL WAVE AMPLITUDE,” Commun. Math. Phys. 96, 419-422 (1984)
- L. Hadasz, Z. Jaskolski and P. Suchanek, “Recursion representation of the Neveu-Schwarz superconformal block,” JHEP 03, 032 (2007) [arXiv:hep-th/0611266 [hep-th]].
- L. Hadasz, Z. Jaskolski and P. Suchanek, “Elliptic recurrence representation of the N=1 superconformal blocks in the Ramond sector,” JHEP 11, 060 (2008) [arXiv:0810.1203 [hep-th]].
- L. Hadasz, Z. Jaskolski and P. Suchanek, “Recursive representation of the torus 1-point conformal block,” JHEP 01, 063 (2010) [arXiv:0911.2353 [hep-th]].
- L. Hadasz, Z. Jaskolski and P. Suchanek, “Recurrence relations for toric N=1 superconformal blocks,” JHEP 09, 122 (2012) [arXiv:1207.5740 [hep-th]].
- M. Cho, S. Collier and X. Yin, “Recursive Representations of Arbitrary Virasoro Conformal Blocks,” JHEP 04, 018 (2019) [arXiv:1703.09805 [hep-th]].
- V. G. Kac and D. A. Kazhdan, “Structure of representations with highest weight of infinite dimensional Lie algebras,” Adv. Math. 34, 97-108 (1979)
- B. L. Feigin and D. B. Fuks, “Invariant skew symmetric differential operators on the line and verma modules over the Virasoro algebra,” Funct. Anal. Appl. 16, 114-126 (1982)
- B. L. Feigin and D. B. Fuks, “Verma modules over the Virasoro algebra,” Funct. Anal. Appl. 17, 241-241 (1983)
- A. Zamolodchikov, “Higher equations of motion in Liouville field theory,” Int. J. Mod. Phys. A 19S2, 510-523 (2004) [arXiv:hep-th/0312279 [hep-th]].
- D. Friedan, Z. a. Qiu and S. H. Shenker, “Superconformal Invariance in Two-Dimensions and the Tricritical Ising Model,” Phys. Lett. B 151, 37-43 (1985)
- M. A. Bershadsky, V. G. Knizhnik and M. G. Teitelman, “Superconformal Symmetry in Two-Dimensions,” Phys. Lett. B 151, 31-36 (1985)
- P. Di Vecchia, J. L. Petersen and H. B. Zheng, “N=2 Extended Superconformal Theories in Two-Dimensions,” Phys. Lett. B 162, 327-332 (1985)
- P. Di Vecchia, J. L. Petersen and M. Yu, “On the Unitary Representations of N=2 Superconformal Theory,” Phys. Lett. B 172, 211-215 (1986)
- P. Di Vecchia, J. L. Petersen, M. Yu and H. B. Zheng, “Explicit Construction of Unitary Representations of the N=2 Superconformal Algebra,” Phys. Lett. B 174, 280-284 (1986)
- H. Ooguri, Y. Oz and Z. Yin, “D-branes on Calabi-Yau spaces and their mirrors,” Nucl. Phys. B 477, 407-430 (1996) [arXiv:hep-th/9606112 [hep-th]].
- V. S. Dotsenko and V. A. Fateev, “Conformal Algebra and Multipoint Correlation Functions in Two-Dimensional Statistical Models,” Nucl. Phys. B 240, 312 (1984)
- V. S. Dotsenko and V. A. Fateev, “Four Point Correlation Functions and the Operator Algebra in the Two-Dimensional Conformal Invariant Theories with the Central Charge c <<< 1,” Nucl. Phys. B 251, 691-734 (1985)
- V. S. Dotsenko and V. A. Fateev, “Operator Algebra of Two-Dimensional Conformal Theories with Central Charge C <<<= 1,” Phys. Lett. B 154, 291-295 (1985)
- G. Felder and R. Silvotti, “Free Field Representation of Minimal Models on a Riemann Surface,” Phys. Lett. B 231, 411-416 (1989)
- S. Hemming, S. Kawai and E. Keski-Vakkuri, “Coulomb gas formulation of SU(2) branes and chiral blocks,” J. Phys. A 38, 5809-5830 (2005) [arXiv:hep-th/0403145 [hep-th]].
- S. Kawai, “Free field realization of boundary states and boundary correlation functions of minimal models,” J. Phys. A 36, 6875-6893 (2003) [arXiv:hep-th/0210032 [hep-th]].
- A. Cappelli, “Modular Invariant Partition Functions of Superconformal Theories,” Phys. Lett. B 185, 82-88 (1987)
- P. Di Francesco, P. Mathieu and D. Senechal, “Conformal Field Theory,” Springer-Verlag, 1997.
- A. Recknagel and V. Schomerus, “Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes,” Cambridge University Press, 2013.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.