Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The linear property of genus-$g$, $n$-point, $b$-boundary, $c$-crosscap correlation functions in two-dimensional conformal field theory (2309.07528v4)

Published 14 Sep 2023 in hep-th

Abstract: We propose a method to challenge the calculation of genus-$g$, bulk $n$-point, $b$-boundary, $c$-crosscap correlation functions with $x$ boundary operators $\mathcal{F}{g,n,b,c}{x}$ in two-dimensional conformal field theories (CFT$_2$). We show that $\mathcal{F}{g,n,b,c}{x}$ are infinite linear combinations of genus-$g$, bulk $(n+b+c)$-point functions $\mathcal{F}_{g,(n+b+c)}$, and try to obtain the linear coefficients in this work. We show the existence of a single pole structure in the linear coefficients at degenerate limits. A practical method to obtain the infinite linear coefficients is the free field realizations of Ishibashi states. We review the results in Virasoro minimal models $\mathcal{M}(p,p')$ and extend it to the $N=1$ minimal models $\mathcal{SM}(p,p')$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, “Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory,” Nucl. Phys. B 241, 333-380 (1984)
  2. H. Sonoda, “SEWING CONFORMAL FIELD THEORIES,” Nucl. Phys. B 311, 401-416 (1988)
  3. H. Sonoda, “SEWING CONFORMAL FIELD THEORIES. 2.,” Nucl. Phys. B 311, 417-432 (1988)
  4. J. L. Cardy, “Operator Content of Two-Dimensional Conformally Invariant Theories,” Nucl. Phys. B 270, 186-204 (1986)
  5. D. C. Lewellen, “Sewing constraints for conformal field theories on surfaces with boundaries,” Nucl. Phys. B 372, 654-682 (1992)
  6. I. Runkel, “Boundary structure constants for the A series Virasoro minimal models,” Nucl. Phys. B 549, 563-578 (1999) [arXiv:hep-th/9811178 [hep-th]].
  7. D. Fioravanti, G. Pradisi and A. Sagnotti, “Sewing constraints and nonorientable open strings,” Phys. Lett. B 321, 349-354 (1994) [arXiv:hep-th/9311183 [hep-th]].
  8. L. Alvarez-Gaume, C. Gomez, G. W. Moore and C. Vafa, “Strings in the Operator Formalism,” Nucl. Phys. B 303, 455-521 (1988)
  9. A. Sen, “Off-shell Amplitudes in Superstring Theory,” Fortsch. Phys. 63, 149-188 (2015) [arXiv:1408.0571 [hep-th]].
  10. N. Ishibashi, “The Boundary and Crosscap States in Conformal Field Theories,” Mod. Phys. Lett. A 4, 251 (1989)
  11. T. Onogi and N. Ishibashi, “Conformal Field Theories on Surfaces With Boundaries and Crosscaps,” Mod. Phys. Lett. A 4, 161 (1989) [erratum: Mod. Phys. Lett. A 4, 885 (1989)]
  12. J. L. Cardy, “Boundary Conditions, Fusion Rules and the Verlinde Formula,” Nucl. Phys. B 324, 581-596 (1989)
  13. R. E. Behrend, P. A. Pearce, V. B. Petkova and J. B. Zuber, “On the classification of bulk and boundary conformal field theories,” Phys. Lett. B 444, 163-166 (1998) [arXiv:hep-th/9809097 [hep-th]].
  14. R. E. Behrend, P. A. Pearce, V. B. Petkova and J. B. Zuber, “Boundary conditions in rational conformal field theories,” Nucl. Phys. B 570, 525-589 (2000) [arXiv:hep-th/9908036 [hep-th]].
  15. G. Pradisi, A. Sagnotti and Y. S. Stanev, “Planar duality in SU(2) WZW models,” Phys. Lett. B 354, 279-286 (1995) [arXiv:hep-th/9503207 [hep-th]].
  16. G. Pradisi, A. Sagnotti and Y. S. Stanev, “The Open descendants of nondiagonal SU(2) WZW models,” Phys. Lett. B 356, 230-238 (1995) [arXiv:hep-th/9506014 [hep-th]].
  17. G. W. Moore and N. Seiberg, “Naturality in Conformal Field Theory,” Nucl. Phys. B 313, 16-40 (1989)
  18. G. W. Moore and N. Seiberg, “Classical and Quantum Conformal Field Theory,” Commun. Math. Phys. 123, 177 (1989)
  19. C. G. Callan, Jr., C. Lovelace, C. R. Nappi and S. A. Yost, “Adding Holes and Crosscaps to the Superstring,” Nucl. Phys. B 293, 83 (1987)
  20. G. Felder, “BRST Approach to Minimal Models,” Nucl. Phys. B 317, 215 (1989) [erratum: Nucl. Phys. B 324, 548 (1989)]
  21. P. Bouwknegt, J. G. McCarthy and K. Pilch, “Free Field Realizations of WZNW Models: BRST Complex and Its Quantum Group Structure,” Phys. Lett. B 234, 297-303 (1990)
  22. P. Bouwknegt, J. G. McCarthy and K. Pilch, “Quantum Group Structure in the Fock Space Resolutions of Sl(n𝑛nitalic_n) Representations,” Commun. Math. Phys. 131, 125-156 (1990)
  23. T. Jayaraman, M. A. Namazie, K. S. Narain, C. A. Nunez and M. H. Sarmadi, “Superconformal Minimal Models on the Torus,” Nucl. Phys. B 336, 610-636 (1990)
  24. P. Bouwknegt, J. G. McCarthy and K. Pilch, “Free field approach to two-dimensional conformal field theories,” Prog. Theor. Phys. Suppl. 102, 67-135 (1990)
  25. P. Bouwknegt, J. G. McCarthy and K. Pilch, “On the freefield resolutions for coset conformal field theories,” Nucl. Phys. B 352, 139-162 (1991)
  26. P. Bouwknegt, J. G. McCarthy, D. Nemeschansky and K. Pilch, “Vertex operators and fusion rules in the free field realizations of WZNW models,” Phys. Lett. B 258, 127-133 (1991)
  27. S. Kawai, “Coulomb gas approach for boundary conformal field theory,” Nucl. Phys. B 630, 203-221 (2002) [arXiv:hep-th/0201146 [hep-th]].
  28. A. F. Caldeira, S. Kawai and J. F. Wheater, “Free boson formulation of boundary states in W(3) minimal models and the critical Potts model,” JHEP 08, 041 (2003) [arXiv:hep-th/0306082 [hep-th]].
  29. S. E. Parkhomenko, “Free field approach to D-branes in Gepner models,” Nucl. Phys. B 731, 360-388 (2005) [arXiv:hep-th/0412296 [hep-th]].
  30. J. L. Cardy, “Conformal Invariance and Surface Critical Behavior,” Nucl. Phys. B 240, 514-532 (1984)
  31. A. Recknagel and V. Schomerus, “D-branes in Gepner models,” Nucl. Phys. B 531, 185-225 (1998) [arXiv:hep-th/9712186 [hep-th]].
  32. A. Recknagel and V. Schomerus, “Boundary deformation theory and moduli spaces of D-branes,” Nucl. Phys. B 545, 233-282 (1999) [arXiv:hep-th/9811237 [hep-th]].
  33. R. E. Behrend, P. A. Pearce and J. B. Zuber, “Integrable boundaries, conformal boundary conditions and A-D-E fusion rules,” J. Phys. A 31, L763-L770 (1998) [arXiv:hep-th/9807142 [hep-th]].
  34. J. L. Cardy and D. C. Lewellen, “Bulk and boundary operators in conformal field theory,” Phys. Lett. B 259, 274-278 (1991)
  35. Y. S. Stanev, “Two-dimensional conformal field theory on open and unoriented surfaces,” [arXiv:hep-th/0112222 [hep-th]].
  36. A. B. Zamolodchikov, “CONFORMAL SYMMETRY IN TWO-DIMENSIONS: AN EXPLICIT RECURRENCE FORMULA FOR THE CONFORMAL PARTIAL WAVE AMPLITUDE,” Commun. Math. Phys. 96, 419-422 (1984)
  37. L. Hadasz, Z. Jaskolski and P. Suchanek, “Recursion representation of the Neveu-Schwarz superconformal block,” JHEP 03, 032 (2007) [arXiv:hep-th/0611266 [hep-th]].
  38. L. Hadasz, Z. Jaskolski and P. Suchanek, “Elliptic recurrence representation of the N=1 superconformal blocks in the Ramond sector,” JHEP 11, 060 (2008) [arXiv:0810.1203 [hep-th]].
  39. L. Hadasz, Z. Jaskolski and P. Suchanek, “Recursive representation of the torus 1-point conformal block,” JHEP 01, 063 (2010) [arXiv:0911.2353 [hep-th]].
  40. L. Hadasz, Z. Jaskolski and P. Suchanek, “Recurrence relations for toric N=1 superconformal blocks,” JHEP 09, 122 (2012) [arXiv:1207.5740 [hep-th]].
  41. M. Cho, S. Collier and X. Yin, “Recursive Representations of Arbitrary Virasoro Conformal Blocks,” JHEP 04, 018 (2019) [arXiv:1703.09805 [hep-th]].
  42. V. G. Kac and D. A. Kazhdan, “Structure of representations with highest weight of infinite dimensional Lie algebras,” Adv. Math. 34, 97-108 (1979)
  43. B. L. Feigin and D. B. Fuks, “Invariant skew symmetric differential operators on the line and verma modules over the Virasoro algebra,” Funct. Anal. Appl. 16, 114-126 (1982)
  44. B. L. Feigin and D. B. Fuks, “Verma modules over the Virasoro algebra,” Funct. Anal. Appl. 17, 241-241 (1983)
  45. A. Zamolodchikov, “Higher equations of motion in Liouville field theory,” Int. J. Mod. Phys. A 19S2, 510-523 (2004) [arXiv:hep-th/0312279 [hep-th]].
  46. D. Friedan, Z. a. Qiu and S. H. Shenker, “Superconformal Invariance in Two-Dimensions and the Tricritical Ising Model,” Phys. Lett. B 151, 37-43 (1985)
  47. M. A. Bershadsky, V. G. Knizhnik and M. G. Teitelman, “Superconformal Symmetry in Two-Dimensions,” Phys. Lett. B 151, 31-36 (1985)
  48. P. Di Vecchia, J. L. Petersen and H. B. Zheng, “N=2 Extended Superconformal Theories in Two-Dimensions,” Phys. Lett. B 162, 327-332 (1985)
  49. P. Di Vecchia, J. L. Petersen and M. Yu, “On the Unitary Representations of N=2 Superconformal Theory,” Phys. Lett. B 172, 211-215 (1986)
  50. P. Di Vecchia, J. L. Petersen, M. Yu and H. B. Zheng, “Explicit Construction of Unitary Representations of the N=2 Superconformal Algebra,” Phys. Lett. B 174, 280-284 (1986)
  51. H. Ooguri, Y. Oz and Z. Yin, “D-branes on Calabi-Yau spaces and their mirrors,” Nucl. Phys. B 477, 407-430 (1996) [arXiv:hep-th/9606112 [hep-th]].
  52. V. S. Dotsenko and V. A. Fateev, “Conformal Algebra and Multipoint Correlation Functions in Two-Dimensional Statistical Models,” Nucl. Phys. B 240, 312 (1984)
  53. V. S. Dotsenko and V. A. Fateev, “Four Point Correlation Functions and the Operator Algebra in the Two-Dimensional Conformal Invariant Theories with the Central Charge c <<< 1,” Nucl. Phys. B 251, 691-734 (1985)
  54. V. S. Dotsenko and V. A. Fateev, “Operator Algebra of Two-Dimensional Conformal Theories with Central Charge C <<<= 1,” Phys. Lett. B 154, 291-295 (1985)
  55. G. Felder and R. Silvotti, “Free Field Representation of Minimal Models on a Riemann Surface,” Phys. Lett. B 231, 411-416 (1989)
  56. S. Hemming, S. Kawai and E. Keski-Vakkuri, “Coulomb gas formulation of SU(2) branes and chiral blocks,” J. Phys. A 38, 5809-5830 (2005) [arXiv:hep-th/0403145 [hep-th]].
  57. S. Kawai, “Free field realization of boundary states and boundary correlation functions of minimal models,” J. Phys. A 36, 6875-6893 (2003) [arXiv:hep-th/0210032 [hep-th]].
  58. A. Cappelli, “Modular Invariant Partition Functions of Superconformal Theories,” Phys. Lett. B 185, 82-88 (1987)
  59. P. Di Francesco, P. Mathieu and D. Senechal, “Conformal Field Theory,” Springer-Verlag, 1997.
  60. A. Recknagel and V. Schomerus, “Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes,” Cambridge University Press, 2013.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube