Papers
Topics
Authors
Recent
2000 character limit reached

Optimized Implementation of Neuromorphic HATS Algorithm on FPGA (2309.07077v1)

Published 12 Sep 2023 in cs.AR

Abstract: In this paper, we present first-ever optimized hardware implementation of a state-of-the-art neuromorphic approach Histogram of Averaged Time Surfaces (HATS) algorithm to event-based object classification in FPGA for asynchronous time-based image sensors (ATIS). Our Implementation achieves latency of 3.3 ms for the N-CARS dataset samples and is capable of processing 2.94 Mevts/s. Speed-up is achieved by using parallelism in the design and multiple Processing Elements can be added. As development platform, Zynq-7000 SoC from Xilinx is used. The tradeoff between Average Absolute Error and Resource Utilization for fixed precision implementation is analyzed and presented. The proposed FPGA implementation is $\sim$ 32 x power efficient compared to software implementation.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.