Papers
Topics
Authors
Recent
2000 character limit reached

QCD phase transitions in the light quark chiral limit

Published 13 Sep 2023 in hep-ph and hep-lat | (2309.06737v3)

Abstract: We investigate the order of the QCD chiral transition in the limit of vanishing bare up/down quark masses and variations of the bare strange-quark mass $0 \le m_{\mathrm{s}} \le \infty$. In this limit and due to universality long range correlations with the quantum numbers of pseudoscalar and scalar mesons may dominate the physics. In order to study the interplay between the microscopic quark and gluon degrees of freedom and the long range correlations we extend a combination of lattice Yang--Mills theory and a (truncated) version of Dyson--Schwinger equations by also taking back-reactions of mesonic degrees of freedom into account. Both this system and the meson backcoupling approach have been studied extensively in the past but this is the first work in a full $(2 + 1)$-flavor setup. Starting from the physical point, we determine the chiral susceptibilities for decreasing up/down quark masses and find good agreement with both lattice and functional renormalization group results. We then proceed to determine the order of the chiral transition along the left-hand side of the Columbia plot, for chemical potentials in the range $-(30 \,\textrm{MeV})2 \le \mu_q2 \le (30 \,\textrm{MeV})2$. We find a second-order phase transition throughout and no trace of a first-order region in the $N_{f} = 3$ corner of the Columbia plot. This result remains unchanged when an additional Goldstone boson due to a restored axial $\mathrm{U_A}(1)$ is taken into account.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. P. Salabura and J. Stroth, Prog. Part. Nucl. Phys. 120, 103869 (2021), arXiv:2005.14589 [nucl-ex] .
  2. D. Almaalol et al.,   (2022), arXiv:2209.05009 [nucl-ex] .
  3. X. Luo and N. Xu, Nucl. Sci. Tech. 28, 112 (2017), arXiv:1701.02105 [nucl-ex] .
  4. A. Bazavov et al., Phys. Rev. D 85, 054503 (2012a), arXiv:1111.1710 [hep-lat] .
  5. A. Bazavov et al. (HotQCD), Phys. Rev. D 90, 094503 (2014), arXiv:1407.6387 [hep-lat] .
  6. A. Bazavov et al., Phys. Rev. D 95, 054504 (2017a), arXiv:1701.04325 [hep-lat] .
  7. A. Bazavov et al. (HotQCD), Phys. Lett. B 795, 15 (2019), arXiv:1812.08235 [hep-lat] .
  8. F. Gao and J. M. Pawlowski, Phys. Rev. D 102, 034027 (2020), arXiv:2002.07500 [hep-ph] .
  9. F. Gao and J. M. Pawlowski, Phys. Lett. B 820, 136584 (2021a), arXiv:2010.13705 [hep-ph] .
  10. P. J. Gunkel and C. S. Fischer, Phys. Rev. D 104, 054022 (2021a), arXiv:2106.08356 [hep-ph] .
  11. P. de Forcrand and O. Philipsen, Phys. Rev. Lett. 105, 152001 (2010), arXiv:1004.3144 [hep-lat] .
  12. A. Bazavov et al. (HotQCD), Phys. Rev. D 86, 094503 (2012b), arXiv:1205.3535 [hep-lat] .
  13. M. I. Buchoff et al., Phys. Rev. D 89, 054514 (2014), arXiv:1309.4149 [hep-lat] .
  14. T. Bhattacharya et al., Phys. Rev. Lett. 113, 082001 (2014), arXiv:1402.5175 [hep-lat] .
  15. R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).
  16. J. B. Kogut and D. K. Sinclair, Phys. Rev. D73, 074512 (2006), arXiv:hep-lat/0603021 [hep-lat] .
  17. O. Philipsen and C. Pinke, Phys. Rev. D93, 114507 (2016), arXiv:1602.06129 [hep-lat] .
  18. J. T. Lenaghan, Phys. Rev. D63, 037901 (2001), arXiv:hep-ph/0005330 [hep-ph] .
  19. P. Kovacs and Z. Szep, Phys. Rev. D75, 025015 (2007), arXiv:hep-ph/0611208 [hep-ph] .
  20. K. Fukushima, Phys. Rev. D77, 114028 (2008), [Erratum: Phys. Rev.D78,039902(2008)], arXiv:0803.3318 [hep-ph] .
  21. B.-J. Schaefer and M. Wagner, Phys. Rev. D79, 014018 (2009), arXiv:0808.1491 [hep-ph] .
  22. M. Mitter and B.-J. Schaefer, Phys. Rev. D89, 054027 (2014), arXiv:1308.3176 [hep-ph] .
  23. M. Grahl and D. H. Rischke, Phys. Rev. D 88, 056014 (2013), arXiv:1307.2184 [hep-th] .
  24. G. Fejos, Phys. Rev. D 105, L071506 (2022), arXiv:2201.07909 [hep-ph] .
  25. P. J. Gunkel and C. S. Fischer, Eur. Phys. J. A 57, 147 (2021b), arXiv:2012.01957 [hep-ph] .
  26. C. S. Fischer and J. Luecker, Phys. Lett. B718, 1036 (2013), arXiv:1206.5191 [hep-ph] .
  27. C. S. Fischer and R. Williams, Phys. Rev. D 78, 074006 (2008), arXiv:0808.3372 [hep-ph] .
  28. J. S. Ball and T.-W. Chiu, Phys. Rev. D 22, 2542 (1980).
  29. C. S. Fischer and J. A. Mueller, Phys. Rev. D 84, 054013 (2011), arXiv:1106.2700 [hep-ph] .
  30. D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 88, 202302 (2002), arXiv:hep-ph/0111100 [hep-ph] .
  31. P. Maris and C. D. Roberts, Phys. Rev. C56, 3369 (1997), arXiv:nucl-th/9708029 [nucl-th] .
  32. J. Lücker, Chiral and deconfinement phase transitions in N=f2N{{}_{f}}=2italic_N start_FLOATSUBSCRIPT italic_f end_FLOATSUBSCRIPT = 2 and N=f2+1N{{}_{f}}=2+1italic_N start_FLOATSUBSCRIPT italic_f end_FLOATSUBSCRIPT = 2 + 1 quantum chromodynamics, Ph.D. thesis, Giessen U. (2013).
  33. H. Pagels and S. Stokar, Phys. Rev. D 20, 2947 (1979).
  34. H. T. Ding et al. (HotQCD), Phys. Rev. Lett. 123, 062002 (2019), arXiv:1903.04801 [hep-lat] .
  35. F. Gao and J. M. Pawlowski, Phys. Rev. D 105, 094020 (2021b), arXiv:2112.01395 [hep-ph] .
  36. C. D. Roberts and S. M. Schmidt, Prog. Part. Nucl. Phys. 45, S1 (2000), arXiv:nucl-th/0005064 .
  37. B.-J. Schaefer and J. Wambach, Nucl. Phys. A 757, 479 (2005), arXiv:nucl-th/0403039 .
  38. B.-J. Schaefer and J. Wambach, Phys. Rev. D75, 085015 (2007), arXiv:hep-ph/0603256 [hep-ph] .
  39. F. Rennecke and B.-J. Schaefer, Phys. Rev. D96, 016009 (2017), arXiv:1610.08748 [hep-ph] .
  40. J. Ellis, Comput. Phys. Commun. 210, 103 (2017), arXiv:1601.05437 [hep-ph] .
Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.