Modeling Cognitive-Affective Processes with Appraisal and Reinforcement Learning
Abstract: Computational models can advance affective science by shedding light onto the interplay between cognition and emotion from an information processing point of view. We propose a computational model of emotion that integrates reinforcement learning (RL) and appraisal theory, establishing a formal relationship between reward processing, goal-directed task learning, cognitive appraisal and emotional experiences. The model achieves this by formalizing evaluative checks from the component process model (CPM) in terms of temporal difference learning updates. We formalized novelty, goal relevance, goal conduciveness, and power. The formalization is task independent and can be applied to any task that can be represented as a Markov decision problem (MDP) and solved using RL. We investigated to what extent CPM-RL enables simulation of emotional responses cased by interactive task events. We evaluate the model by predicting a range of human emotions based on a series of vignette studies, highlighting its potential in improving our understanding of the role of reward processing in affective experiences.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.