All near-horizon symmetries of the Schwarzschild black hole in linearised gravity (2309.05775v3)
Abstract: Asymptotic symmetries are known to constrain the infrared behaviour of scattering processes in asymptotically flat spacetimes. By the same token, one expects symmetries of the black hole horizon to constrain near-horizon gravitational scattering. In this paper, we take a step towards establishing this connection. We find all near-horizon symmetries that can be potentially relevant to gravitational scattering near the horizon of the Schwarzschild black hole. We study large diffeomorphisms of linearised perturbations of the Schwarzschild black hole in a partial wave basis and in a gauge that allows for gravitational radiation crossing the event horizon. This setup is ideally suited for studying processes involving near-horizon gravitons like scattering and black hole evaporation. We find the most general near-horizon symmetries that are consistent with finite perturbations at the horizon. Since we do not impose any further boundary conditions, these symmetries represent the biggest set of symmetries in this setting. We find the associated covariant charges to be finite and non-zero showing that these symmetries are physical. Interestingly, for a large black hole, the dominant symmetries are just two copies of $ u(1)$.
- T. Regge and J. A. Wheeler, “Stability of a Schwarzschild singularity,” Phys. Rev. 108 (1957) 1063–1069.
- C. V. Vishveshwara, “Stability of the schwarzschild metric,” Phys. Rev. D 1 (1970) 2870–2879.
- F. J. Zerilli, “Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics,” Phys. Rev. D 2 (1970) 2141–2160.
- S. Chandrasekhar, The mathematical theory of black holes. 1985.
- 1998.
- R. J. Gleiser, C. O. Nicasio, R. H. Price, and J. Pullin, “Gravitational radiation from Schwarzschild black holes: The Second order perturbation formalism,” Phys. Rept. 325 (2000) 41–81, arXiv:gr-qc/9807077.
- M. Sasaki and H. Tagoshi, “Analytic black hole perturbation approach to gravitational radiation,” Living Rev. Rel. 6 (2003) 6, arXiv:gr-qc/0306120.
- K. Martel, “Gravitational wave forms from a point particle orbiting a Schwarzschild black hole,” Phys. Rev. D 69 (2004) 044025, arXiv:gr-qc/0311017.
- V. Moncrief, “Gravitational perturbations of spherically symmetric systems. I. The exterior problem.,” Annals Phys. 88 (1974) 323–342.
- U. H. Gerlach and U. K. Sengupta, “GAUGE INVARIANT PERTURBATIONS ON MOST GENERAL SPHERICALLY SYMMETRIC SPACE-TIMES,” Phys. Rev. D 19 (1979) 2268–2272.
- O. Sarbach and M. Tiglio, “Gauge invariant perturbations of Schwarzschild black holes in horizon penetrating coordinates,” Phys. Rev. D 64 (2001) 084016, arXiv:gr-qc/0104061.
- C. T. Cunningham, R. H. Price, and V. Moncrief, “Radiation from collapsing relativistic stars. I - Linearized odd-parity radiation,” Astrophys. J. 224 (1978) 643.
- S. Jhingan and T. Tanaka, “Improvement on the metric reconstruction scheme in Regge-Wheeler-Zerilli formalism,” Phys. Rev. D 67 (2003) 104018, arXiv:gr-qc/0211060.
- K. Martel and E. Poisson, “Gravitational perturbations of the Schwarzschild spacetime: A Practical covariant and gauge-invariant formalism,” Phys. Rev. D 71 (2005) 104003, arXiv:gr-qc/0502028.
- S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43 (1975) 199–220. [Erratum: Commun.Math.Phys. 46, 206 (1976)].
- S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev. D 14 (1976) 2460–2473.
- N. Gaddam, N. Groenenboom, and G. ’t Hooft, “Quantum gravity on the black hole horizon,” JHEP 01 (2022) 023, arXiv:2012.02357 [hep-th].
- N. Gaddam and N. Groenenboom, “Soft graviton exchange and the information paradox,” arXiv:2012.02355 [hep-th].
- P. Betzios, N. Gaddam, and O. Papadoulaki, “Black hole S-matrix for a scalar field,” JHEP 07 (2021) 017, arXiv:2012.09834 [hep-th].
- N. Gaddam and N. Groenenboom, “2 → 2N scattering: Eikonalisation and the Page curve,” JHEP 01 (2022) 146, arXiv:2110.14673 [hep-th].
- N. Gaddam and N. Groenenboom, “A toolbox for black hole scattering,” arXiv:2207.11277 [hep-th].
- G. ’t Hooft, “The Scattering matrix approach for the quantum black hole: An Overview,” Int. J. Mod. Phys. A 11 (1996) 4623–4688, arXiv:gr-qc/9607022.
- G. ’t Hooft, “Diagonalizing the Black Hole Information Retrieval Process,” arXiv:1509.01695 [gr-qc].
- G. ’t Hooft, “Black hole unitarity and antipodal entanglement,” Found. Phys. 46 no. 9, (2016) 1185–1198, arXiv:1601.03447 [gr-qc].
- P. Betzios, N. Gaddam, and O. Papadoulaki, “The Black Hole S-Matrix from Quantum Mechanics,” JHEP 11 (2016) 131, arXiv:1607.07885 [hep-th].
- A. Aggarwal and N. Gaddam, “In preparation,” (2023) .
- R. K. Sachs, “Asymptotic symmetries in gravitational theory,” Phys. Rev. 128 (1962) 2851–2864.
- R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-time,” Proc. Roy. Soc. Lond. A 270 (1962) 103.
- H. Bondi, M. G. van der Burg, and A. W. Metzner, “Gravitational waves in general relativity. 7. Waves from axi-symmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962) 21.
- A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07 (2014) 152, arXiv:1312.2229 [hep-th].
- S. Weinberg, “Infrared photons and gravitons,” Phys. Rev. 140 (1965) B516–B524.
- T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” JHEP 05 (2015) 151, arXiv:1401.7026 [hep-th].
- A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” arXiv:1703.05448 [hep-th].
- L. Donnay, G. Giribet, H. A. Gonzalez, and M. Pino, “Supertranslations and Superrotations at the Black Hole Horizon,” Phys. Rev. Lett. 116 no. 9, (2016) 091101, arXiv:1511.08687 [hep-th].
- S. W. Hawking, M. J. Perry, and A. Strominger, “Soft Hair on Black Holes,” Phys. Rev. Lett. 116 no. 23, (2016) 231301, arXiv:1601.00921 [hep-th].
- L. Donnay, G. Giribet, H. A. González, and M. Pino, “Extended Symmetries at the Black Hole Horizon,” JHEP 09 (2016) 100, arXiv:1607.05703 [hep-th].
- S. W. Hawking, M. J. Perry, and A. Strominger, “Superrotation Charge and Supertranslation Hair on Black Holes,” JHEP 05 (2017) 161, arXiv:1611.09175 [hep-th].
- S. Haco, S. W. Hawking, M. J. Perry, and A. Strominger, “Black Hole Entropy and Soft Hair,” JHEP 12 (2018) 098, arXiv:1810.01847 [hep-th].
- A. Aggarwal, A. Castro, and S. Detournay, “Warped Symmetries of the Kerr Black Hole,” JHEP 01 (2020) 016, arXiv:1909.03137 [hep-th].
- V. Chandrasekaran, E. E. Flanagan, and K. Prabhu, “Symmetries and charges of general relativity at null boundaries,” JHEP 11 (2018) 125, arXiv:1807.11499 [hep-th]. [Erratum: JHEP 07, 224 (2023)].
- D. Grumiller, A. Pérez, M. M. Sheikh-Jabbari, R. Troncoso, and C. Zwikel, “Spacetime structure near generic horizons and soft hair,” Phys. Rev. Lett. 124 no. 4, (2020) 041601, arXiv:1908.09833 [hep-th].
- H. Adami, D. Grumiller, S. Sadeghian, M. M. Sheikh-Jabbari, and C. Zwikel, “T-Witts from the horizon,” JHEP 04 (2020) 128, arXiv:2002.08346 [hep-th].
- H. Adami, D. Grumiller, M. M. Sheikh-Jabbari, V. Taghiloo, H. Yavartanoo, and C. Zwikel, “Null boundary phase space: slicings, news & memory,” JHEP 11 (2021) 155, arXiv:2110.04218 [hep-th].
- V. Chandrasekaran, E. E. Flanagan, I. Shehzad, and A. J. Speranza, “A general framework for gravitational charges and holographic renormalization,” Int. J. Mod. Phys. A 37 no. 17, (2022) 2250105, arXiv:2111.11974 [gr-qc].
- L. Freidel, R. Oliveri, D. Pranzetti, and S. Speziale, “Extended corner symmetry, charge bracket and Einstein’s equations,” JHEP 09 (2021) 083, arXiv:2104.12881 [hep-th].
- L. Ciambelli and R. G. Leigh, “Isolated surfaces and symmetries of gravity,” Phys. Rev. D 104 no. 4, (2021) 046005, arXiv:2104.07643 [hep-th].
- M. M. Sheikh-Jabbari, “On symplectic form for null boundary phase space,” Gen. Rel. Grav. 54 no. 11, (2022) 140, arXiv:2209.05043 [gr-qc].
- V. Chandrasekaran and E. E. Flanagan, “The gravitational phase space of horizons in general relativity,” arXiv:2309.03871 [gr-qc].
- G. Odak, A. Rignon-Bret, and S. Speziale, “General gravitational charges on null hypersurfaces,” arXiv:2309.03854 [gr-qc].
- M. Mirbabayi and M. Porrati, “Dressed Hard States and Black Hole Soft Hair,” Phys. Rev. Lett. 117 no. 21, (2016) 211301, arXiv:1607.03120 [hep-th].
- 2020. arXiv:1706.07143 [hep-th].
- R. Kallosh and A. A. Rahman, “Quantization of gravity in the black hole background,” Phys. Rev. D 104 no. 8, (2021) 086008, arXiv:2106.01966 [hep-th].
- R. Kallosh, “Quantization of gravity in spherical harmonic basis,” Phys. Rev. D 104 no. 8, (2021) 086023, arXiv:2107.02099 [hep-th].
- V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dynamical black hole entropy,” Phys. Rev. D50 (1994) 846–864, gr-qc/9403028.
- G. Barnich and F. Brandt, “Covariant theory of asymptotic symmetries, conservation laws and central charges,” Nucl. Phys. B 633 (2002) 3–82, arXiv:hep-th/0111246.
- A. Fiorucci and G. Compère, Advanced Lectures in General Relativity. PhD thesis, Brussels U., PTM, 2018. arXiv:1801.07064 [hep-th]. http://inspirehep.net/record/1649253/files/arXiv:1801.07064.pdf.
- A. Aggarwal, “Supertranslations in Higher Dimensions Revisited,” Phys. Rev. D 99 no. 2, (2019) 026015, arXiv:1811.00093 [hep-th].
- E. Conde and P. Mao, “Remarks on asymptotic symmetries and the subleading soft photon theorem,” Phys. Rev. D 95 no. 2, (2017) 021701, arXiv:1605.09731 [hep-th].
- E. Conde and P. Mao, “BMS Supertranslations and Not So Soft Gravitons,” JHEP 05 (2017) 060, arXiv:1612.08294 [hep-th].
- G. Barnich and C. Troessaert, “BMS charge algebra,” JHEP 12 (2011) 105, arXiv:1106.0213 [hep-th].
- G. Barnich and P.-H. Lambert, “Einstein-Yang-Mills theory: Asymptotic symmetries,” Phys. Rev. D 88 (2013) 103006, arXiv:1310.2698 [hep-th].
- T. He, A.-M. Raclariu, and K. M. Zurek, “From Shockwaves to the Gravitational Memory Effect,” arXiv:2305.14411 [hep-th].
- N. Gaddam and T. He, “In preparation,” (2023) .
- P. Betzios, N. Gaddam, and O. Papadoulaki, “Antipodal correlation on the meron wormhole and a bang-crunch universe,” Phys. Rev. D 97 no. 12, (2018) 126006, arXiv:1711.03469 [hep-th].
- P. Betzios, N. Gaddam, and O. Papadoulaki, “Black holes, quantum chaos, and the Riemann hypothesis,” arXiv:2004.09523 [hep-th].
- G. ’t Hooft, “Quantum Clones inside Black Holes,” Universe 8 no. 10, (2022) 537.
- F. Feleppa, N. Gaddam, and N. Groenenboom, “Charged particle scattering near the horizon,” arXiv:2309.05791 [hep-th].
- U. H. Gerlach and U. K. Sengupta, “GAUGE INVARIANT COUPLED GRAVITATIONAL, ACOUSTICAL, AND ELECTROMAGNETIC MODES ON MOST GENERAL SPHERICAL SPACE-TIMES,” Phys. Rev. D 22 (1980) 1300–1312.
- S. Hollands, A. Ishibashi, and R. M. Wald, “BMS Supertranslations and Memory in Four and Higher Dimensions,” Class. Quant. Grav. 34 no. 15, (2017) 155005, arXiv:1612.03290 [gr-qc].
- S. Hollands and R. M. Wald, “Conformal null infinity does not exist for radiating solutions in odd spacetime dimensions,” Class. Quant. Grav. 21 (2004) 5139–5146, arXiv:gr-qc/0407014.
- D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Higher-dimensional supertranslations and Weinberg’s soft graviton theorem,” Ann. Math. Sci. Appl. 02 (2017) 69–94, arXiv:1502.07644 [gr-qc].
- M. Pate, A.-M. Raclariu, and A. Strominger, “Gravitational Memory in Higher Dimensions,” JHEP 06 (2018) 138, arXiv:1712.01204 [hep-th].
- D. Colferai and S. Lionetti, “Asymptotic symmetries and the subleading soft graviton theorem in higher dimensions,” Phys. Rev. D 104 no. 6, (2021) 064010, arXiv:2005.03439 [hep-th].
- A. Campoleoni, D. Francia, and C. Heissenberg, “On asymptotic symmetries in higher dimensions for any spin,” JHEP 12 (2020) 129, arXiv:2011.04420 [hep-th].
- C. Chowdhury, A. A. H., and A. Kundu, “Generalized BMS algebra in higher even dimensions,” Phys. Rev. D 106 no. 12, (2022) 126025, arXiv:2209.06839 [hep-th].
- C. Chowdhury, R. Mishra, and S. G. Prabhu, “The Asymptotic Structure of Gravity in Higher Even Dimensions,” arXiv:2201.07813 [hep-th].
- F. Capone, Aspects of Holography beyond AdS BMS superrotations in higher dimensions. PhD thesis, Southampton U., University of Southampton, U. Southampton, 2021.
- F. Capone, “General null asymptotics and superrotation-compatible configuration spaces in d≥4𝑑4d\geq 4italic_d ≥ 4,” JHEP 10 (2021) 158, arXiv:2108.01203 [hep-th]. [Erratum: JHEP 02, 113 (2022)].
- O. Fuentealba, M. Henneaux, J. Matulich, and C. Troessaert, “Bondi-Metzner-Sachs Group in Five Spacetime Dimensions,” Phys. Rev. Lett. 128 no. 5, (2022) 051103, arXiv:2111.09664 [hep-th].
- O. Fuentealba, M. Henneaux, J. Matulich, and C. Troessaert, “Asymptotic structure of the gravitational field in five spacetime dimensions: Hamiltonian analysis,” JHEP 07 (2022) 149, arXiv:2206.04972 [hep-th].
- S. Lionetti, “Asymptotic symmetries and soft theorems in higher-dimensional gravity,” EPJ Web Conf. 270 (2022) 00034, arXiv:2209.10889 [hep-th].
- F. Capone, P. Mitra, A. Poole, and B. Tomova, “Phase Space Renormalization and Finite BMS Charges in Six Dimensions,” arXiv:2304.09330 [hep-th].
- E. T. Akhmedov and M. Godazgar, “Symmetries at the black hole horizon,” Phys. Rev. D 96 no. 10, (2017) 104025, arXiv:1707.05517 [hep-th].
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.