Observations of Orbiting Hot Spots around Naked Singularities (2309.04157v2)
Abstract: Recently, it has been reported that photons can traverse naked singularities in the Janis-Newman-Winicour and Born-Infeld spacetimes when these singularities are appropriately regularized. In this paper, we investigate observational signatures of hot spots orbiting these naked singularities, with a focus on discerning them from black holes. In contrast to Schwarzschild black holes, we unveil the presence of multiple additional image tracks within critical curves in time integrated images capturing a complete orbit of hot spots. Moreover, these new images manifest as a more pronounced second-highest peak in temporal magnitudes when observed at low inclinations.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019. arXiv:1906.11238, doi:10.3847/2041-8213/ab0ec7.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett., 875(1):L2, 2019. arXiv:1906.11239, doi:10.3847/2041-8213/ab0c96.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett., 875(1):L3, 2019. arXiv:1906.11240, doi:10.3847/2041-8213/ab0c57.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett., 875(1):L4, 2019. arXiv:1906.11241, doi:10.3847/2041-8213/ab0e85.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett., 875(1):L5, 2019. arXiv:1906.11242, doi:10.3847/2041-8213/ab0f43.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, 2019. arXiv:1906.11243, doi:10.3847/2041-8213/ab1141.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett., 910(1):L12, 2021. arXiv:2105.01169, doi:10.3847/2041-8213/abe71d.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett., 910(1):L13, 2021. arXiv:2105.01173, doi:10.3847/2041-8213/abe4de.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930(2):L12, 2022. doi:10.3847/2041-8213/ac6674.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophys. J. Lett., 930(2):L13, 2022. doi:10.3847/2041-8213/ac6675.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett., 930(2):L14, 2022. doi:10.3847/2041-8213/ac6429.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophys. J. Lett., 930(2):L15, 2022. doi:10.3847/2041-8213/ac6736.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophys. J. Lett., 930(2):L16, 2022. doi:10.3847/2041-8213/ac6672.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett., 930(2):L17, 2022. doi:10.3847/2041-8213/ac6756.
- Shadows of spherically symmetric black holes and naked singularities. Mon. Not. Roy. Astron. Soc., 482(1):52–64, 2019. arXiv:1802.08060, doi:10.1093/mnras/sty2624.
- The Shadow of a Spherically Accreting Black Hole. Astrophys. J. Lett., 885(2):L33, 2019. arXiv:1910.02957, doi:10.3847/2041-8213/ab518c.
- Shadows and photon spheres with spherical accretions in the four-dimensional Gauss–Bonnet black hole. Eur. Phys. J. C, 80(9):872, 2020. arXiv:2004.12074, doi:10.1140/epjc/s10052-020-08449-y.
- Influence of quintessence dark energy on the shadow of black hole. Eur. Phys. J. C, 80(11):1058, 2020. arXiv:2007.06333, doi:10.1140/epjc/s10052-020-08656-7.
- K. Saurabh and Kimet Jusufi. Imprints of dark matter on black hole shadows using spherical accretions. Eur. Phys. J. C, 81(6):490, 2021. arXiv:2009.10599, doi:10.1140/epjc/s10052-021-09280-9.
- Image of a regular phantom compact object and its luminosity under spherical accretions. Class. Quant. Grav., 38(11):115008, 2021. arXiv:2011.04310, doi:10.1088/1361-6382/abf712.
- J. P. Luminet. Image of a spherical black hole with thin accretion disk. Astron. Astrophys., 75:228–235, 1979.
- Extreme gravitational lensing near rotating black holes. Mon. Not. Roy. Astron. Soc., 359:1217–1228, 2005. arXiv:astro-ph/0411339, doi:10.1111/j.1365-2966.2005.08980.x.
- Black Hole Shadows, Photon Rings, and Lensing Rings. Phys. Rev. D, 100(2):024018, 2019. arXiv:1906.00873, doi:10.1103/PhysRevD.100.024018.
- The brightest point in accretion disk and black hole spin: implication to the image of black hole M87*. Universe, 5:183, 2019. arXiv:1906.07171, doi:10.3390/universe5080183.
- Influence of quantum correction on black hole shadows, photon rings, and lensing rings. Chin. Phys. C, 45(8):085103, 2021. arXiv:2008.00657, doi:10.1088/1674-1137/ac06bb.
- Shadow images and observed luminosity of the Bardeen black hole surrounded by different accretions *. Chin. Phys. C, 46(8):085106, 2022. arXiv:2103.13664, doi:10.1088/1674-1137/ac67fe.
- From a locality-principle for new physics to image features of regular spinning black holes with disks. JCAP, 05:073, 2021. arXiv:2103.13163, doi:10.1088/1475-7516/2021/05/073.
- Shadows and rings of the Kehagias-Sfetsos black hole surrounded by thin disk accretion. JCAP, 06:037, 2021. arXiv:2105.08521, doi:10.1088/1475-7516/2021/06/037.
- Photon spheres and spherical accretion image of a hairy black hole. Phys. Rev. D, 104(2):024003, 2021. arXiv:2104.08703, doi:10.1103/PhysRevD.104.024003.
- Photon ring and observational appearance of a hairy black hole. Phys. Rev. D, 104(4):044049, 2021. arXiv:2105.11770, doi:10.1103/PhysRevD.104.044049.
- J. L. Synge. The Escape of Photons from Gravitationally Intense Stars. Mon. Not. Roy. Astron. Soc., 131(3):463–466, 1966. doi:10.1093/mnras/131.3.463.
- Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J., 178:347, 1972. doi:10.1086/151796.
- J. M. Bardeen. Timelike and null geodesics in the Kerr metric. In Les Houches Summer School of Theoretical Physics: Black Holes, 1973.
- K. S. Virbhadra and George F. R. Ellis. Schwarzschild black hole lensing. Phys. Rev. D, 62:084003, 2000. arXiv:astro-ph/9904193, doi:10.1103/PhysRevD.62.084003.
- The Geometry of photon surfaces. J. Math. Phys., 42:818–838, 2001. arXiv:gr-qc/0005050, doi:10.1063/1.1308507.
- K. S. Virbhadra. Relativistic images of Schwarzschild black hole lensing. Phys. Rev. D, 79:083004, 2009. arXiv:0810.2109, doi:10.1103/PhysRevD.79.083004.
- Valerio Bozza. Gravitational Lensing by Black Holes. Gen. Rel. Grav., 42:2269–2300, 2010. arXiv:0911.2187, doi:10.1007/s10714-010-0988-2.
- K. S. Virbhadra. Distortions of images of Schwarzschild lensing. Phys. Rev. D, 106(6):064038, 2022. arXiv:2204.01879, doi:10.1103/PhysRevD.106.064038.
- Fabian Schmidt. Weak Lensing Probes of Modified Gravity. Phys. Rev. D, 78:043002, 2008. arXiv:0805.4812, doi:10.1103/PhysRevD.78.043002.
- Tests of Gravity from Imaging and Spectroscopic Surveys. Phys. Rev. D, 81:023503, 2010. arXiv:0906.2221, doi:10.1103/PhysRevD.81.023503.
- The Distance Duality Relation From Strong Gravitational Lensing. Astrophys. J., 822(2):74, 2016. arXiv:1511.01318, doi:10.3847/0004-637X/822/2/74.
- Prieslei Goulart. Phantom wormholes in Einstein–Maxwell-dilaton theory. Class. Quant. Grav., 35(2):025012, 2018. arXiv:1708.00935, doi:10.1088/1361-6382/aa9dfc.
- Gravitational lensing in black-bounce spacetimes. Phys. Rev. D, 102(4):044021, 2020. arXiv:2005.13096, doi:10.1103/PhysRevD.102.044021.
- Strong gravitational lensing by rotating Simpson-Visser black holes. JCAP, 10:013, 2021. arXiv:2104.00696, doi:10.1088/1475-7516/2021/10/013.
- Naoki Tsukamoto. Gravitational lensing by two photon spheres in a black-bounce spacetime in strong deflection limits. Phys. Rev. D, 104(6):064022, 2021. arXiv:2105.14336, doi:10.1103/PhysRevD.104.064022.
- Einstein-Maxwell-dilaton neutral black holes in strong magnetic fields: Topological charge, shadows, and lensing. Phys. Rev. D, 105(6):064070, 2022. arXiv:2112.10802, doi:10.1103/PhysRevD.105.064070.
- New light rings from multiple critical curves as observational signatures of black hole mimickers. Phys. Lett. B, 829:137045, 2022. arXiv:2110.10002, doi:10.1016/j.physletb.2022.137045.
- Analytical study of gravitational lensing in Kerr-Newman black-bounce spacetime. JCAP, 11:006, 2022. arXiv:2206.09954, doi:10.1088/1475-7516/2022/11/006.
- Formation of naked singularities: The violation of cosmic censorship. Phys. Rev. Lett., 66:994–997, 1991. doi:10.1103/PhysRevLett.66.994.
- Naked singularities in spherically symmetric inhomogeneous Tolman-Bondi dust cloud collapse. Phys. Rev. D, 47:5357–5369, 1993. arXiv:gr-qc/9303037, doi:10.1103/PhysRevD.47.5357.
- Naked singularity formation in the collapse of a spherical cloud of counter rotating particles. Phys. Rev. D, 58:041502, 1998. arXiv:gr-qc/9805071, doi:10.1103/PhysRevD.58.041502.
- Why do naked singularities form in gravitational collapse? Phys. Rev. D, 65:101501, 2002. arXiv:gr-qc/0109051, doi:10.1103/PhysRevD.65.101501.
- Spherical gravitational collapse in N-dimensions. Phys. Rev. D, 76:084026, 2007. arXiv:gr-qc/0608136, doi:10.1103/PhysRevD.76.084026.
- Self-similar scalar field collapse. Phys. Rev. D, 95(2):024015, 2017. arXiv:1701.04235, doi:10.1103/PhysRevD.95.024015.
- New class of naked singularities and their observational signatures. Phys. Rev. D, 101(4):043005, 2020. arXiv:1709.03798, doi:10.1103/PhysRevD.101.043005.
- Gravitational lensing by naked singularities. Phys. Rev. D, 65:103004, 2002. doi:10.1103/PhysRevD.65.103004.
- Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities. Phys. Rev. D, 77:124014, 2008. arXiv:0710.2333, doi:10.1103/PhysRevD.77.124014.
- Gravitational Lensing by Rotating Naked Singularities. Phys. Rev. D, 78:083004, 2008. arXiv:0806.3289, doi:10.1103/PhysRevD.78.083004.
- Can strong gravitational lensing distinguish naked singularities from black holes? Phys. Rev. D, 86:063010, 2012. arXiv:1206.3077, doi:10.1103/PhysRevD.86.063010.
- Analytical approach to strong gravitational lensing from ultracompact objects. Phys. Rev. D, 99(10):104040, 2019. arXiv:1903.08211, doi:10.1103/PhysRevD.99.104040.
- Suvankar Paul. Strong gravitational lensing by a strongly naked null singularity. Phys. Rev. D, 102(6):064045, 2020. arXiv:2007.05509, doi:10.1103/PhysRevD.102.064045.
- Static spherically symmetric configurations with N nonlinear scalar fields: Global and asymptotic properties. Phys. Rev. D, 101(6):064064, 2020. arXiv:1912.00470, doi:10.1103/PhysRevD.101.064064.
- Thin accretion discs around spherically symmetric configurations with nonlinear scalar fields. Phys. Rev. D, 104(10):104055, 2021. arXiv:2107.05111, doi:10.1103/PhysRevD.104.104055.
- Singularities in Static Spherically Symmetric Configurations of General Relativity with Strongly Nonlinear Scalar Fields. Galaxies, 9(4):72, 2021. arXiv:2109.01931, doi:10.3390/galaxies9040072.
- Naoki Tsukamoto. Gravitational lensing by a photon sphere in a Reissner-Nordström naked singularity spacetime in strong deflection limits. Phys. Rev. D, 104(12):124016, 2021. arXiv:2107.07146, doi:10.1103/PhysRevD.104.124016.
- The images of a rotating naked singularity with a complete photon sphere. 7 2023. arXiv:2307.16748.
- Gravitational Lensing by Born-Infeld Naked Singularities. 5 2023. arXiv:2305.17411.
- Gravitational Lensing by Transparent Janis-Newman-Winicour Naked Singularities. 9 2023. arXiv:2309.00905.
- Non-singular string cosmology via α′superscript𝛼′\alpha^{\prime}italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT corrections. JHEP, 10:263, 2019. arXiv:1909.00830, doi:10.1007/JHEP10(2019)263.
- Construct α′superscript𝛼′\alpha^{\prime}italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT corrected or loop corrected solutions without curvature singularities. JHEP, 01:164, 2020. arXiv:1910.05808, doi:10.1007/JHEP01(2020)164.
- Shuxuan Ying. Resolving naked singularities in α′superscript𝛼′\alpha^{\prime}italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT-corrected string theory. Eur. Phys. J. C, 82(6):523, 2022. arXiv:2112.03087, doi:10.1140/epjc/s10052-022-10427-5.
- J. Dexter et al. Sgr A* near-infrared flares from reconnection events in a magnetically arrested disc. Mon. Not. Roy. Astron. Soc., 497(4):4999–5007, 2020. arXiv:2006.03657, doi:10.1093/mnras/staa2288.
- Sgr A* X-ray flares from non-thermal particle acceleration in a magnetically arrested disc. Mon. Not. Roy. Astron. Soc., 511(3):3536–3547, 2022. arXiv:2107.08056, doi:10.1093/mnras/stac337.
- Spinning black holes magnetically connected to a Keplerian disk - Magnetosphere, reconnection sheet, particle acceleration, and coronal heating. Astron. Astrophys., 663:A169, 2022. arXiv:2112.03933, doi:10.1051/0004-6361/202142847.
- G. Witzel et al. Rapid Variability of Sgr A* across the Electromagnetic Spectrum. Astrophys. J., 917(2):73, 2021. arXiv:2011.09582, doi:10.3847/1538-4357/ac0891.
- Multiwavelength Observations of Sgr A*. I. 2019 July 18. Astrophys. J., 923(1):54, 2021. arXiv:2107.09681, doi:10.3847/1538-4357/ac2d2c.
- R. Abuter et al. Constraining particle acceleration in Sgr A⋆⋆\star⋆ with simultaneous GRAVITY, Spitzer, NuSTAR, and Chandra observations. Astron. Astrophys., 654:A22, 2021. arXiv:2107.01096, doi:10.1051/0004-6361/202140981.
- Orbital motion near Sagittarius A* - Constraints from polarimetric ALMA observations. Astron. Astrophys., 665:L6, 2022. arXiv:2209.09926, doi:10.1051/0004-6361/202244493.
- Detection of orbital motions near the last stable circular orbit of the massive black hole sgra. Astronomy & Astrophysics, 618:L10, 2018.
- I. Z. Fisher. Scalar mesostatic field with regard for gravitational effects. Zh. Eksp. Teor. Fiz., 18:636–640, 1948. arXiv:gr-qc/9911008.
- Reality of the Schwarzschild Singularity. Phys. Rev. Lett., 20:878–880, 1968. doi:10.1103/PhysRevLett.20.878.
- M. Wyman. Static Spherically Symmetric Scalar Fields in General Relativity. Phys. Rev. D, 24:839–841, 1981. doi:10.1103/PhysRevD.24.839.
- Nature of singularity in Einstein massless scalar theory. Int. J. Mod. Phys. D, 6:357–362, 1997. arXiv:gr-qc/9512030, doi:10.1142/S0218271897000200.
- Tanay Kr. Dey. Born-Infeld black holes in the presence of a cosmological constant. Phys. Lett. B, 595(1-4):484–490, 2004. arXiv:hep-th/0406169, doi:10.1016/j.physletb.2004.06.047.
- Born-Infeld black holes in (A)dS spaces. Phys. Rev. D, 70:124034, 2004. arXiv:hep-th/0410158, doi:10.1103/PhysRevD.70.124034.
- Black holes with multiple photon spheres. Phys. Rev. D, 107(12):124037, 2023. arXiv:2212.12901, doi:10.1103/PhysRevD.107.124037.
- Geometrical aspects of light propagation in nonlinear electrodynamics. Phys. Rev. D, 61:045001, 2000. arXiv:gr-qc/9911085, doi:10.1103/PhysRevD.61.045001.
- Shadows of Kerr black holes with and without scalar hair. Int. J. Mod. Phys. D, 25(09):1641021, 2016. arXiv:1605.08293, doi:10.1142/S0218271816410212.
- Observational signatures of hot spots orbiting horizonless objects. Phys. Rev. D, 106(4):044031, 2022. arXiv:2205.11541, doi:10.1103/PhysRevD.106.044031.
- Imaging compact boson stars with hot spots and thin accretion disks. Phys. Rev. D, 108(4):044021, 2023. arXiv:2303.17296, doi:10.1103/PhysRevD.108.044021.
- Regularizing the JNW and JMN naked singularities. Eur. Phys. J. C, 83(5):397, 2023. arXiv:2206.11764, doi:10.1140/epjc/s10052-023-11558-z.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.