Observations of Orbiting Hot Spots around Scalarized Reissner-Nordström Black Holes (2401.10905v1)
Abstract: This paper investigates the observational signatures of hot spots orbiting scalarized Reissner-Nordstr\"om black holes, which have been reported to possess multiple photon spheres. In contrast to the single-photon sphere case, hot spots orbiting black holes with two photon spheres produce additional image tracks in time integrated images capturing a complete orbit of hot spots. Notably, these newly observed patterns manifest as a distinct second-highest peak in temporal magnitudes when observed at low inclination angles. These findings offer promising observational probes for distinguishing black holes with multiple photon spheres from their single-photon sphere counterparts.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019. arXiv:1906.11238, doi:10.3847/2041-8213/ab0ec7.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett., 875(1):L2, 2019. arXiv:1906.11239, doi:10.3847/2041-8213/ab0c96.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett., 875(1):L3, 2019. arXiv:1906.11240, doi:10.3847/2041-8213/ab0c57.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett., 875(1):L4, 2019. arXiv:1906.11241, doi:10.3847/2041-8213/ab0e85.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett., 875(1):L5, 2019. arXiv:1906.11242, doi:10.3847/2041-8213/ab0f43.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, 2019. arXiv:1906.11243, doi:10.3847/2041-8213/ab1141.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett., 910(1):L12, 2021. arXiv:2105.01169, doi:10.3847/2041-8213/abe71d.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett., 910(1):L13, 2021. arXiv:2105.01173, doi:10.3847/2041-8213/abe4de.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930(2):L12, 2022. doi:10.3847/2041-8213/ac6674.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophys. J. Lett., 930(2):L13, 2022. doi:10.3847/2041-8213/ac6675.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett., 930(2):L14, 2022. doi:10.3847/2041-8213/ac6429.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophys. J. Lett., 930(2):L15, 2022. doi:10.3847/2041-8213/ac6736.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophys. J. Lett., 930(2):L16, 2022. doi:10.3847/2041-8213/ac6672.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett., 930(2):L17, 2022. doi:10.3847/2041-8213/ac6756.
- J. L. Synge. The Escape of Photons from Gravitationally Intense Stars. Mon. Not. Roy. Astron. Soc., 131(3):463–466, 1966. doi:10.1093/mnras/131.3.463.
- Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J., 178:347, 1972. doi:10.1086/151796.
- J. M. Bardeen. Timelike and null geodesics in the Kerr metric. In Les Houches Summer School of Theoretical Physics: Black Holes, 1973.
- Valerio Bozza. Gravitational Lensing by Black Holes. Gen. Rel. Grav., 42:2269–2300, 2010. arXiv:0911.2187, doi:10.1007/s10714-010-0988-2.
- J. Dexter et al. Sgr A* near-infrared flares from reconnection events in a magnetically arrested disc. Mon. Not. Roy. Astron. Soc., 497(4):4999–5007, 2020. arXiv:2006.03657, doi:10.1093/mnras/staa2288.
- Sgr A* X-ray flares from non-thermal particle acceleration in a magnetically arrested disc. Mon. Not. Roy. Astron. Soc., 511(3):3536–3547, 2022. arXiv:2107.08056, doi:10.1093/mnras/stac337.
- Spinning black holes magnetically connected to a Keplerian disk - Magnetosphere, reconnection sheet, particle acceleration, and coronal heating. Astron. Astrophys., 663:A169, 2022. arXiv:2112.03933, doi:10.1051/0004-6361/202142847.
- G. Witzel et al. Rapid Variability of Sgr A* across the Electromagnetic Spectrum. Astrophys. J., 917(2):73, 2021. arXiv:2011.09582, doi:10.3847/1538-4357/ac0891.
- Multiwavelength Observations of Sgr A*. I. 2019 July 18. Astrophys. J., 923(1):54, 2021. arXiv:2107.09681, doi:10.3847/1538-4357/ac2d2c.
- R. Abuter et al. Constraining particle acceleration in Sgr A⋆⋆\star⋆ with simultaneous GRAVITY, Spitzer, NuSTAR, and Chandra observations. Astron. Astrophys., 654:A22, 2021. arXiv:2107.01096, doi:10.1051/0004-6361/202140981.
- Orbital motion near Sagittarius A* - Constraints from polarimetric ALMA observations. Astron. Astrophys., 665:L6, 2022. arXiv:2209.09926, doi:10.1051/0004-6361/202244493.
- Detection of orbital motions near the last stable circular orbit of the massive black hole sgra. Astronomy & Astrophysics, 618:L10, 2018.
- Spontaneous Scalarization of Charged Black Holes. Phys. Rev. Lett., 121(10):101102, 2018. arXiv:1806.05190, doi:10.1103/PhysRevLett.121.101102.
- Spontaneous Scalarisation of Charged Black Holes: Coupling Dependence and Dynamical Features. Class. Quant. Grav., 36(13):134002, 2019. [Erratum: Class.Quant.Grav. 37, 049501 (2020)]. arXiv:1902.05079, doi:10.1088/1361-6382/ab23a1.
- Charged black holes with axionic-type couplings: Classes of solutions and dynamical scalarization. Phys. Rev. D, 100(8):084045, 2019. arXiv:1908.00037, doi:10.1103/PhysRevD.100.084045.
- Einstein-Maxwell-scalar black holes: the hot, the cold and the bald. Phys. Lett. B, 806:135493, 2020. arXiv:2002.00963, doi:10.1016/j.physletb.2020.135493.
- Scalarized charged black holes with scalar mass term. Phys. Rev. D, 100(12):124055, 2019. arXiv:1909.11859, doi:10.1103/PhysRevD.100.124055.
- Pedro G.S. Fernandes. Einstein-Maxwell-scalar black holes with massive and self-interacting scalar hair. Phys. Dark Univ., 30:100716, 2020. arXiv:2003.01045, doi:10.1016/j.dark.2020.100716.
- Yan Peng. Scalarization of horizonless reflecting stars: neutral scalar fields non-minimally coupled to Maxwell fields. Phys. Lett. B, 804:135372, 2020. arXiv:1912.11989, doi:10.1016/j.physletb.2020.135372.
- Instability of Reissner–Nordström black hole in Einstein-Maxwell-scalar theory. Eur. Phys. J. C, 79(3):273, 2019. arXiv:1808.02609, doi:10.1140/epjc/s10052-019-6792-6.
- Stability of scalarized charged black holes in the Einstein–Maxwell–Scalar theory. Eur. Phys. J. C, 79(8):641, 2019. arXiv:1904.09864, doi:10.1140/epjc/s10052-019-7176-7.
- Radial perturbations of the scalarized black holes in Einstein-Maxwell-conformally coupled scalar theory. Phys. Rev. D, 102(6):064011, 2020. arXiv:2005.06677, doi:10.1103/PhysRevD.102.064011.
- Onset of rotating scalarized black holes in Einstein-Chern-Simons-Scalar theory. Phys. Lett. B, 814:136081, 2021. arXiv:2012.02375, doi:10.1016/j.physletb.2021.136081.
- Stability analysis of a charged black hole with a nonlinear complex scalar field. Phys. Rev. D, 104(4):044008, 2021. arXiv:2101.00026, doi:10.1103/PhysRevD.104.044008.
- Higher dimensional black hole scalarization. JHEP, 09:186, 2020. arXiv:2007.04153, doi:10.1007/JHEP09(2020)186.
- Quasinormal modes of scalarized black holes in the Einstein–Maxwell–Scalar theory. Phys. Lett. B, 790:400–407, 2019. arXiv:1812.03604, doi:10.1016/j.physletb.2019.01.046.
- Quasinormal modes of hot, cold and bald Einstein-Maxwell-scalar black holes. 8 2020. arXiv:2008.11744.
- Scalarized charged black holes in the Einstein-Maxwell-Scalar theory with two U(1) fields. Phys. Lett. B, 811:135905, 2020. arXiv:2009.05193, doi:10.1016/j.physletb.2020.135905.
- Scalarized black holes in the Einstein-Maxwell-scalar theory with a quasitopological term. Phys. Rev. D, 103(2):024010, 2021. arXiv:2011.09665, doi:10.1103/PhysRevD.103.024010.
- Topology and spacetime structure influences on black hole scalarization. 12 2020. arXiv:2012.11844.
- Scalarization of asymptotically anti–de Sitter black holes with applications to holographic phase transitions. Phys. Rev. D, 101(12):124016, 2020. arXiv:1911.01950, doi:10.1103/PhysRevD.101.124016.
- Black Hole Spontaneous Scalarisation with a Positive Cosmological Constant. Phys. Lett. B, 802:135269, 2020. arXiv:1910.05286, doi:10.1016/j.physletb.2020.135269.
- Dynamical charged black hole spontaneous scalarization in anti–de Sitter spacetimes. Phys. Rev. D, 104(8):084089, 2021. arXiv:2103.13599, doi:10.1103/PhysRevD.104.084089.
- Scalarized Einstein–Maxwell-scalar black holes in anti-de Sitter spacetime. Eur. Phys. J. C, 81(10):864, 2021. arXiv:2102.04015, doi:10.1140/epjc/s10052-021-09614-7.
- Nonlinear dynamics of hot, cold and bald Einstein-Maxwell-scalar black holes in AdS spacetime. 7 2023. arXiv:2307.03060.
- Critical Phenomena in Dynamical Scalarization of Charged Black Holes. Phys. Rev. Lett., 128(16):161105, 2022. arXiv:2112.07455, doi:10.1103/PhysRevLett.128.161105.
- Dynamical transitions in scalarization and descalarization through black hole accretion. Phys. Rev. D, 106(6):L061501, 2022. arXiv:2204.09260, doi:10.1103/PhysRevD.106.L061501.
- Type I critical dynamical scalarization and descalarization in Einstein-Maxwell-scalar theory. 6 2023. arXiv:2306.10371.
- Scalarized Kerr-Newman black holes. JHEP, 10:076, 2023. arXiv:2307.12210, doi:10.1007/JHEP10(2023)076.
- Photon spheres and spherical accretion image of a hairy black hole. Phys. Rev. D, 104(2):024003, 2021. arXiv:2104.08703, doi:10.1103/PhysRevD.104.024003.
- Photon ring and observational appearance of a hairy black hole. Phys. Rev. D, 104(4):044049, 2021. arXiv:2105.11770, doi:10.1103/PhysRevD.104.044049.
- Interferometric Signatures of Black Holes with Multiple Photon Spheres. 12 2023. arXiv:2312.10304.
- Gravitational lensing by black holes with multiple photon spheres. Phys. Rev. D, 105(12):124064, 2022. arXiv:2204.13948, doi:10.1103/PhysRevD.105.124064.
- Appearance of an infalling star in black holes with multiple photon spheres. Sci. China Phys. Mech. Astron., 65(12):120412, 2022. arXiv:2206.13705, doi:10.1007/s11433-022-1986-x.
- Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Phys. Rev. D, 90(4):044069, 2014. arXiv:1406.5510, doi:10.1103/PhysRevD.90.044069.
- Joe Keir. Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars. Class. Quant. Grav., 33(13):135009, 2016. arXiv:1404.7036, doi:10.1088/0264-9381/33/13/135009.
- Light rings and long-lived modes in quasiblack hole spacetimes. Phys. Rev. D, 105(2):024049, 2022. arXiv:2108.08967, doi:10.1103/PhysRevD.105.024049.
- Quasinormal modes of black holes with multiple photon spheres. JHEP, 06:060, 2022. arXiv:2112.14133, doi:10.1007/JHEP06(2022)060.
- Echoes from hairy black holes. JHEP, 06:073, 2022. arXiv:2204.00982, doi:10.1007/JHEP06(2022)073.
- Superradiance instabilities of charged black holes in Einstein-Maxwell-scalar theory. JHEP, 07:070, 2023. arXiv:2301.06483, doi:10.1007/JHEP07(2023)070.
- Quasi-topological Electromagnetism: Dark Energy, Dyonic Black Holes, Stable Photon Spheres and Hidden Electromagnetic Duality. Sci. China Phys. Mech. Astron., 63:240411, 2020. arXiv:1907.10876, doi:10.1007/s11433-019-1446-1.
- Echoes from classical black holes. Phys. Rev. D, 105(10):104049, 2022. arXiv:2112.14780, doi:10.1103/PhysRevD.105.104049.
- Resummation of Massive Gravity. Phys. Rev. Lett., 106:231101, 2011. arXiv:1011.1232, doi:10.1103/PhysRevLett.106.231101.
- Gravitational wave echoes from black holes in massive gravity. Phys. Rev. D, 103(2):024058, 2021. arXiv:2011.04032, doi:10.1103/PhysRevD.103.024058.
- Naoki Tsukamoto. Gravitational lensing by two photon spheres in a black-bounce spacetime in strong deflection limits. Phys. Rev. D, 104(6):064022, 2021. arXiv:2105.14336, doi:10.1103/PhysRevD.104.064022.
- Naoki Tsukamoto. Linearization stability of reflection-asymmetric thin-shell wormholes with double shadows. Phys. Rev. D, 103(6):064031, 2021. arXiv:2101.07060, doi:10.1103/PhysRevD.103.064031.
- Naoki Tsukamoto. Retrolensing by two photon spheres of a black-bounce spacetime. Phys. Rev. D, 105(8):084036, 2022. arXiv:2202.09641, doi:10.1103/PhysRevD.105.084036.
- Black holes with multiple photon spheres. Phys. Rev. D, 107(12):124037, 2023. arXiv:2212.12901, doi:10.1103/PhysRevD.107.124037.
- K. S. Virbhadra and George F. R. Ellis. Schwarzschild black hole lensing. Phys. Rev. D, 62:084003, 2000. arXiv:astro-ph/9904193, doi:10.1103/PhysRevD.62.084003.
- V. Bozza. Gravitational lensing in the strong field limit. Phys. Rev. D, 66:103001, 2002. arXiv:gr-qc/0208075, doi:10.1103/PhysRevD.66.103001.
- Analytical approach to strong gravitational lensing from ultracompact objects. Phys. Rev. D, 99(10):104040, 2019. arXiv:1903.08211, doi:10.1103/PhysRevD.99.104040.
- Gravitational Lensing by Born-Infeld Naked Singularities. 5 2023. arXiv:2305.17411.
- Imaging optically-thin hot spots near the black hole horizon of sgr a* at radio and near-infrared wavelengths. Mon. Not. Roy. Astron. Soc., 367:905–916, 2006. arXiv:astro-ph/0509237, doi:10.1111/j.1365-2966.2006.10152.x.
- A polarised infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots. Mon. Not. Roy. Astron. Soc., 375:764–772, 2007. arXiv:astro-ph/0611737, doi:10.1111/j.1365-2966.2006.11338.x.
- Prospects for testing the nature of Sgr A*’s NIR flares on the basis of current VLT- and future VLTI-observations. Astrophys. J., 692:902–916, 2009. arXiv:0810.4947, doi:10.1088/0004-637X/692/1/902.
- Gravitational Lensing by Transparent Janis-Newman-Winicour Naked Singularities. 9 2023. arXiv:2309.00905.
- Observations of Orbiting Hot Spots around Naked Singularities. 9 2023. arXiv:2309.04157.
- Observational signatures of hot spots orbiting horizonless objects. Phys. Rev. D, 106(4):044031, 2022. arXiv:2205.11541, doi:10.1103/PhysRevD.106.044031.
- Imaging compact boson stars with hot spots and thin accretion disks. Phys. Rev. D, 108(4):044021, 2023. arXiv:2303.17296, doi:10.1103/PhysRevD.108.044021.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.