Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 208 tok/s Pro
2000 character limit reached

Observations of Orbiting Hot Spots around Scalarized Reissner-Nordström Black Holes (2401.10905v1)

Published 4 Jan 2024 in gr-qc

Abstract: This paper investigates the observational signatures of hot spots orbiting scalarized Reissner-Nordstr\"om black holes, which have been reported to possess multiple photon spheres. In contrast to the single-photon sphere case, hot spots orbiting black holes with two photon spheres produce additional image tracks in time integrated images capturing a complete orbit of hot spots. Notably, these newly observed patterns manifest as a distinct second-highest peak in temporal magnitudes when observed at low inclination angles. These findings offer promising observational probes for distinguishing black holes with multiple photon spheres from their single-photon sphere counterparts.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019. arXiv:1906.11238, doi:10.3847/2041-8213/ab0ec7.
  2. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett., 875(1):L2, 2019. arXiv:1906.11239, doi:10.3847/2041-8213/ab0c96.
  3. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett., 875(1):L3, 2019. arXiv:1906.11240, doi:10.3847/2041-8213/ab0c57.
  4. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett., 875(1):L4, 2019. arXiv:1906.11241, doi:10.3847/2041-8213/ab0e85.
  5. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett., 875(1):L5, 2019. arXiv:1906.11242, doi:10.3847/2041-8213/ab0f43.
  6. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, 2019. arXiv:1906.11243, doi:10.3847/2041-8213/ab1141.
  7. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett., 910(1):L12, 2021. arXiv:2105.01169, doi:10.3847/2041-8213/abe71d.
  8. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett., 910(1):L13, 2021. arXiv:2105.01173, doi:10.3847/2041-8213/abe4de.
  9. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930(2):L12, 2022. doi:10.3847/2041-8213/ac6674.
  10. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophys. J. Lett., 930(2):L13, 2022. doi:10.3847/2041-8213/ac6675.
  11. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett., 930(2):L14, 2022. doi:10.3847/2041-8213/ac6429.
  12. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophys. J. Lett., 930(2):L15, 2022. doi:10.3847/2041-8213/ac6736.
  13. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophys. J. Lett., 930(2):L16, 2022. doi:10.3847/2041-8213/ac6672.
  14. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett., 930(2):L17, 2022. doi:10.3847/2041-8213/ac6756.
  15. J. L. Synge. The Escape of Photons from Gravitationally Intense Stars. Mon. Not. Roy. Astron. Soc., 131(3):463–466, 1966. doi:10.1093/mnras/131.3.463.
  16. Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J., 178:347, 1972. doi:10.1086/151796.
  17. J. M. Bardeen. Timelike and null geodesics in the Kerr metric. In Les Houches Summer School of Theoretical Physics: Black Holes, 1973.
  18. Valerio Bozza. Gravitational Lensing by Black Holes. Gen. Rel. Grav., 42:2269–2300, 2010. arXiv:0911.2187, doi:10.1007/s10714-010-0988-2.
  19. J. Dexter et al. Sgr A* near-infrared flares from reconnection events in a magnetically arrested disc. Mon. Not. Roy. Astron. Soc., 497(4):4999–5007, 2020. arXiv:2006.03657, doi:10.1093/mnras/staa2288.
  20. Sgr A* X-ray flares from non-thermal particle acceleration in a magnetically arrested disc. Mon. Not. Roy. Astron. Soc., 511(3):3536–3547, 2022. arXiv:2107.08056, doi:10.1093/mnras/stac337.
  21. Spinning black holes magnetically connected to a Keplerian disk - Magnetosphere, reconnection sheet, particle acceleration, and coronal heating. Astron. Astrophys., 663:A169, 2022. arXiv:2112.03933, doi:10.1051/0004-6361/202142847.
  22. G. Witzel et al. Rapid Variability of Sgr A* across the Electromagnetic Spectrum. Astrophys. J., 917(2):73, 2021. arXiv:2011.09582, doi:10.3847/1538-4357/ac0891.
  23. Multiwavelength Observations of Sgr A*. I. 2019 July 18. Astrophys. J., 923(1):54, 2021. arXiv:2107.09681, doi:10.3847/1538-4357/ac2d2c.
  24. R. Abuter et al. Constraining particle acceleration in Sgr A⋆⋆\star⋆ with simultaneous GRAVITY, Spitzer, NuSTAR, and Chandra observations. Astron. Astrophys., 654:A22, 2021. arXiv:2107.01096, doi:10.1051/0004-6361/202140981.
  25. Orbital motion near Sagittarius A* - Constraints from polarimetric ALMA observations. Astron. Astrophys., 665:L6, 2022. arXiv:2209.09926, doi:10.1051/0004-6361/202244493.
  26. Detection of orbital motions near the last stable circular orbit of the massive black hole sgra. Astronomy & Astrophysics, 618:L10, 2018.
  27. Spontaneous Scalarization of Charged Black Holes. Phys. Rev. Lett., 121(10):101102, 2018. arXiv:1806.05190, doi:10.1103/PhysRevLett.121.101102.
  28. Spontaneous Scalarisation of Charged Black Holes: Coupling Dependence and Dynamical Features. Class. Quant. Grav., 36(13):134002, 2019. [Erratum: Class.Quant.Grav. 37, 049501 (2020)]. arXiv:1902.05079, doi:10.1088/1361-6382/ab23a1.
  29. Charged black holes with axionic-type couplings: Classes of solutions and dynamical scalarization. Phys. Rev. D, 100(8):084045, 2019. arXiv:1908.00037, doi:10.1103/PhysRevD.100.084045.
  30. Einstein-Maxwell-scalar black holes: the hot, the cold and the bald. Phys. Lett. B, 806:135493, 2020. arXiv:2002.00963, doi:10.1016/j.physletb.2020.135493.
  31. Scalarized charged black holes with scalar mass term. Phys. Rev. D, 100(12):124055, 2019. arXiv:1909.11859, doi:10.1103/PhysRevD.100.124055.
  32. Pedro G.S. Fernandes. Einstein-Maxwell-scalar black holes with massive and self-interacting scalar hair. Phys. Dark Univ., 30:100716, 2020. arXiv:2003.01045, doi:10.1016/j.dark.2020.100716.
  33. Yan Peng. Scalarization of horizonless reflecting stars: neutral scalar fields non-minimally coupled to Maxwell fields. Phys. Lett. B, 804:135372, 2020. arXiv:1912.11989, doi:10.1016/j.physletb.2020.135372.
  34. Instability of Reissner–Nordström black hole in Einstein-Maxwell-scalar theory. Eur. Phys. J. C, 79(3):273, 2019. arXiv:1808.02609, doi:10.1140/epjc/s10052-019-6792-6.
  35. Stability of scalarized charged black holes in the Einstein–Maxwell–Scalar theory. Eur. Phys. J. C, 79(8):641, 2019. arXiv:1904.09864, doi:10.1140/epjc/s10052-019-7176-7.
  36. Radial perturbations of the scalarized black holes in Einstein-Maxwell-conformally coupled scalar theory. Phys. Rev. D, 102(6):064011, 2020. arXiv:2005.06677, doi:10.1103/PhysRevD.102.064011.
  37. Onset of rotating scalarized black holes in Einstein-Chern-Simons-Scalar theory. Phys. Lett. B, 814:136081, 2021. arXiv:2012.02375, doi:10.1016/j.physletb.2021.136081.
  38. Stability analysis of a charged black hole with a nonlinear complex scalar field. Phys. Rev. D, 104(4):044008, 2021. arXiv:2101.00026, doi:10.1103/PhysRevD.104.044008.
  39. Higher dimensional black hole scalarization. JHEP, 09:186, 2020. arXiv:2007.04153, doi:10.1007/JHEP09(2020)186.
  40. Quasinormal modes of scalarized black holes in the Einstein–Maxwell–Scalar theory. Phys. Lett. B, 790:400–407, 2019. arXiv:1812.03604, doi:10.1016/j.physletb.2019.01.046.
  41. Quasinormal modes of hot, cold and bald Einstein-Maxwell-scalar black holes. 8 2020. arXiv:2008.11744.
  42. Scalarized charged black holes in the Einstein-Maxwell-Scalar theory with two U(1) fields. Phys. Lett. B, 811:135905, 2020. arXiv:2009.05193, doi:10.1016/j.physletb.2020.135905.
  43. Scalarized black holes in the Einstein-Maxwell-scalar theory with a quasitopological term. Phys. Rev. D, 103(2):024010, 2021. arXiv:2011.09665, doi:10.1103/PhysRevD.103.024010.
  44. Topology and spacetime structure influences on black hole scalarization. 12 2020. arXiv:2012.11844.
  45. Scalarization of asymptotically anti–de Sitter black holes with applications to holographic phase transitions. Phys. Rev. D, 101(12):124016, 2020. arXiv:1911.01950, doi:10.1103/PhysRevD.101.124016.
  46. Black Hole Spontaneous Scalarisation with a Positive Cosmological Constant. Phys. Lett. B, 802:135269, 2020. arXiv:1910.05286, doi:10.1016/j.physletb.2020.135269.
  47. Dynamical charged black hole spontaneous scalarization in anti–de Sitter spacetimes. Phys. Rev. D, 104(8):084089, 2021. arXiv:2103.13599, doi:10.1103/PhysRevD.104.084089.
  48. Scalarized Einstein–Maxwell-scalar black holes in anti-de Sitter spacetime. Eur. Phys. J. C, 81(10):864, 2021. arXiv:2102.04015, doi:10.1140/epjc/s10052-021-09614-7.
  49. Nonlinear dynamics of hot, cold and bald Einstein-Maxwell-scalar black holes in AdS spacetime. 7 2023. arXiv:2307.03060.
  50. Critical Phenomena in Dynamical Scalarization of Charged Black Holes. Phys. Rev. Lett., 128(16):161105, 2022. arXiv:2112.07455, doi:10.1103/PhysRevLett.128.161105.
  51. Dynamical transitions in scalarization and descalarization through black hole accretion. Phys. Rev. D, 106(6):L061501, 2022. arXiv:2204.09260, doi:10.1103/PhysRevD.106.L061501.
  52. Type I critical dynamical scalarization and descalarization in Einstein-Maxwell-scalar theory. 6 2023. arXiv:2306.10371.
  53. Scalarized Kerr-Newman black holes. JHEP, 10:076, 2023. arXiv:2307.12210, doi:10.1007/JHEP10(2023)076.
  54. Photon spheres and spherical accretion image of a hairy black hole. Phys. Rev. D, 104(2):024003, 2021. arXiv:2104.08703, doi:10.1103/PhysRevD.104.024003.
  55. Photon ring and observational appearance of a hairy black hole. Phys. Rev. D, 104(4):044049, 2021. arXiv:2105.11770, doi:10.1103/PhysRevD.104.044049.
  56. Interferometric Signatures of Black Holes with Multiple Photon Spheres. 12 2023. arXiv:2312.10304.
  57. Gravitational lensing by black holes with multiple photon spheres. Phys. Rev. D, 105(12):124064, 2022. arXiv:2204.13948, doi:10.1103/PhysRevD.105.124064.
  58. Appearance of an infalling star in black holes with multiple photon spheres. Sci. China Phys. Mech. Astron., 65(12):120412, 2022. arXiv:2206.13705, doi:10.1007/s11433-022-1986-x.
  59. Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Phys. Rev. D, 90(4):044069, 2014. arXiv:1406.5510, doi:10.1103/PhysRevD.90.044069.
  60. Joe Keir. Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars. Class. Quant. Grav., 33(13):135009, 2016. arXiv:1404.7036, doi:10.1088/0264-9381/33/13/135009.
  61. Light rings and long-lived modes in quasiblack hole spacetimes. Phys. Rev. D, 105(2):024049, 2022. arXiv:2108.08967, doi:10.1103/PhysRevD.105.024049.
  62. Quasinormal modes of black holes with multiple photon spheres. JHEP, 06:060, 2022. arXiv:2112.14133, doi:10.1007/JHEP06(2022)060.
  63. Echoes from hairy black holes. JHEP, 06:073, 2022. arXiv:2204.00982, doi:10.1007/JHEP06(2022)073.
  64. Superradiance instabilities of charged black holes in Einstein-Maxwell-scalar theory. JHEP, 07:070, 2023. arXiv:2301.06483, doi:10.1007/JHEP07(2023)070.
  65. Quasi-topological Electromagnetism: Dark Energy, Dyonic Black Holes, Stable Photon Spheres and Hidden Electromagnetic Duality. Sci. China Phys. Mech. Astron., 63:240411, 2020. arXiv:1907.10876, doi:10.1007/s11433-019-1446-1.
  66. Echoes from classical black holes. Phys. Rev. D, 105(10):104049, 2022. arXiv:2112.14780, doi:10.1103/PhysRevD.105.104049.
  67. Resummation of Massive Gravity. Phys. Rev. Lett., 106:231101, 2011. arXiv:1011.1232, doi:10.1103/PhysRevLett.106.231101.
  68. Gravitational wave echoes from black holes in massive gravity. Phys. Rev. D, 103(2):024058, 2021. arXiv:2011.04032, doi:10.1103/PhysRevD.103.024058.
  69. Naoki Tsukamoto. Gravitational lensing by two photon spheres in a black-bounce spacetime in strong deflection limits. Phys. Rev. D, 104(6):064022, 2021. arXiv:2105.14336, doi:10.1103/PhysRevD.104.064022.
  70. Naoki Tsukamoto. Linearization stability of reflection-asymmetric thin-shell wormholes with double shadows. Phys. Rev. D, 103(6):064031, 2021. arXiv:2101.07060, doi:10.1103/PhysRevD.103.064031.
  71. Naoki Tsukamoto. Retrolensing by two photon spheres of a black-bounce spacetime. Phys. Rev. D, 105(8):084036, 2022. arXiv:2202.09641, doi:10.1103/PhysRevD.105.084036.
  72. Black holes with multiple photon spheres. Phys. Rev. D, 107(12):124037, 2023. arXiv:2212.12901, doi:10.1103/PhysRevD.107.124037.
  73. K. S. Virbhadra and George F. R. Ellis. Schwarzschild black hole lensing. Phys. Rev. D, 62:084003, 2000. arXiv:astro-ph/9904193, doi:10.1103/PhysRevD.62.084003.
  74. V. Bozza. Gravitational lensing in the strong field limit. Phys. Rev. D, 66:103001, 2002. arXiv:gr-qc/0208075, doi:10.1103/PhysRevD.66.103001.
  75. Analytical approach to strong gravitational lensing from ultracompact objects. Phys. Rev. D, 99(10):104040, 2019. arXiv:1903.08211, doi:10.1103/PhysRevD.99.104040.
  76. Gravitational Lensing by Born-Infeld Naked Singularities. 5 2023. arXiv:2305.17411.
  77. Imaging optically-thin hot spots near the black hole horizon of sgr a* at radio and near-infrared wavelengths. Mon. Not. Roy. Astron. Soc., 367:905–916, 2006. arXiv:astro-ph/0509237, doi:10.1111/j.1365-2966.2006.10152.x.
  78. A polarised infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots. Mon. Not. Roy. Astron. Soc., 375:764–772, 2007. arXiv:astro-ph/0611737, doi:10.1111/j.1365-2966.2006.11338.x.
  79. Prospects for testing the nature of Sgr A*’s NIR flares on the basis of current VLT- and future VLTI-observations. Astrophys. J., 692:902–916, 2009. arXiv:0810.4947, doi:10.1088/0004-637X/692/1/902.
  80. Gravitational Lensing by Transparent Janis-Newman-Winicour Naked Singularities. 9 2023. arXiv:2309.00905.
  81. Observations of Orbiting Hot Spots around Naked Singularities. 9 2023. arXiv:2309.04157.
  82. Observational signatures of hot spots orbiting horizonless objects. Phys. Rev. D, 106(4):044031, 2022. arXiv:2205.11541, doi:10.1103/PhysRevD.106.044031.
  83. Imaging compact boson stars with hot spots and thin accretion disks. Phys. Rev. D, 108(4):044021, 2023. arXiv:2303.17296, doi:10.1103/PhysRevD.108.044021.
Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com