On the integrable structure of deformed sine kernel determinants (2309.03803v1)
Abstract: We study a family of Fredholm determinants associated to deformations of the sine kernel, parametrized by a weight function w. For a specific choice of w, this kernel describes bulk statistics of finite temperature free fermions. We establish a connection between these determinants and a system of integro-differential equations generalizing the fifth Painlev\'e equation, and we show that they allow us to solve an integrable PDE explicitly for a large class of initial data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.