On a 1/2-equation model of turbulence
Abstract: In 1-equation URANS models of turbulence the eddy viscosity is given by $\nu_{T}=0.55l(x,t)\sqrt{k(x,t)}$ . The length scale $l$ must be pre-specified and $k(x,t)$ is determined by solving a nonlinear partial differential equation. We show that in interesting cases the spacial mean of $k(x,t)$ satisfies a simple ordinary differential equation. Using its solution in $\nu_{T}$ results in a 1/2-equation model. This model has attractive analytic properties. Further, in comparative tests in 2d and 3d the velocity statistics produced by the 1/2-equation model are comparable to those of the full 1-equation model.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.