Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RSDiff: Remote Sensing Image Generation from Text Using Diffusion Model (2309.02455v2)

Published 3 Sep 2023 in cs.CV

Abstract: The generation and enhancement of satellite imagery are critical in remote sensing, requiring high-quality, detailed images for accurate analysis. This research introduces a two-stage diffusion model methodology for synthesizing high-resolution satellite images from textual prompts. The pipeline comprises a Low-Resolution Diffusion Model (LRDM) that generates initial images based on text inputs and a Super-Resolution Diffusion Model (SRDM) that refines these images into high-resolution outputs. The LRDM merges text and image embeddings within a shared latent space, capturing essential scene content and structure. The SRDM then enhances these images, focusing on spatial features and visual clarity. Experiments conducted using the Remote Sensing Image Captioning Dataset (RSICD) demonstrate that our method outperforms existing models, producing satellite images with accurate geographical details and improved spatial resolution.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ahmad Sebaq (2 papers)
  2. Mohamed ElHelw (7 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com